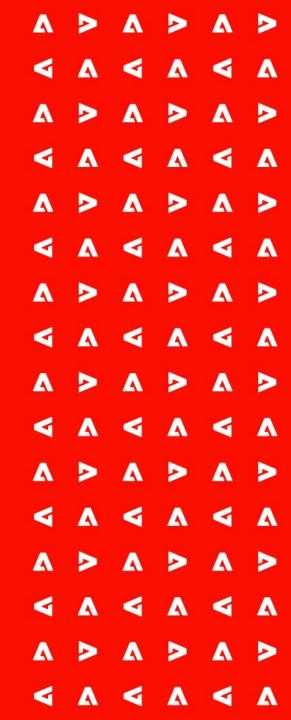


OpenAl's CLIP

Surya | 10th Feb 2021



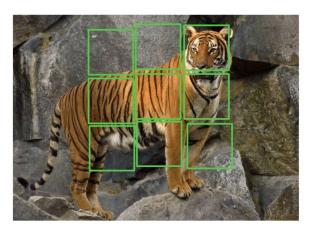
- Supervised Learning (ResNet models)
 - ImageNet
 - Crowdsourced images + Class labels [one out of 1000 classes]
 - 15 million samples
- Semi-Supervised Learning
 - Few shot variants
 - Some (Image, Label) samples + Lots of (Image, No-label)
 - Mean Teacher, VAT, MixMatch
- Transfer Learning
 - Use **ResNet weights** from net trained on ImageNet as encoder
 - Finetune on smaller dataset

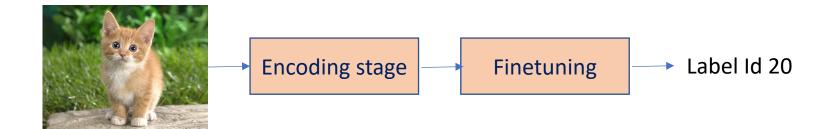
Images Labels

Images Labels **Images**

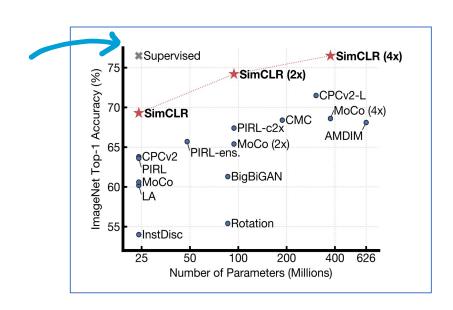
Images Labels

- Self-Supervised Learning
 - Inspired from text pretraining
 - Language models
 - predict center word given context words
 - predict next character given previous character
 - Designing Pretext tasks
 - predict center pixel given surrounding pixels
 - crop images, randomize predict the correct order
 - Get labelled data for free!
 - Caveat: quality of label from human > quality of label from jigsaw puzzles
 - CPC, CPCv2, MoCo, SimCLR, SimSiam



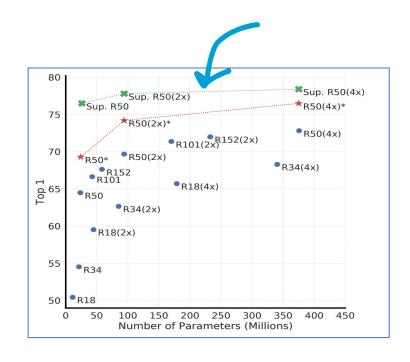


	Train (Encoding Stage)	Finetuning stage	Testing Stage
Supervised	Data: ImageNet with labels Model: ResNet Output: ResNet Encoder	Data: Pascal data with labels Model: ResNet Encoder + RCNN classifier on top Output: Finetuned Enc + Classifier	Data: Pascal test data Model: Finetuned Enc + Classifer Output: Label
Self supervised	Data: Imagnet without labels Model: SimCLR Output: Encoder	Data: Pascal data with labels Model: SimCLR Encoder + Linear / RCNN on top Output: Finetuned Enc + Classifier	Data: Pascal test data Model: Finetuned Enc + classifier Output: Label



Self-supervised SimCLR seems to be worse than Supervised?

- Yes, that's expected but
- No human supervision! Except linear classifier finetuning
- Very good representations



Self-supervised models get better with more data and compute – while supervised models stagnate

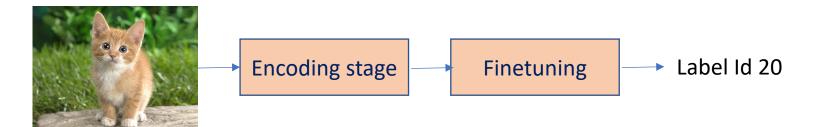
- Because nothing much to learn from just 1000 labels
- Not scalable

Text waiting for ImageNet moment?

- Representations learned from selfsupervised clearly outperform previous techniques
 - More data-efficient [for finetuning]
- However, still not achieved the taskagnostic qualities of BERT, GPT-x representations
 - So technically vision is waiting for its BERT moment
- Upshot: Move away from ML-grade labelling (class labels); Build larger models

17-1-1			fraction		
Method	Architecture	1% To	10% op 5	,	
Supervised baseline	ResNet-50	48.4	80.4		
Methods using other labe	l-propagation:				
Pseudo-label	ResNet-50	51.6	82.4		
VAT+Entropy Min.	ResNet-50	47.0	83.4		- 10 - 1
UDA (w. RandAug)	ResNet-50	_	88.5	2 6	JUL
FixMatch (w. RandAug)	ResNet-50	-	89.1	C,	emi ubenis
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2	۲	rpervo
Methods using representa	tion learning only:				
InstDisc	ResNet-50	39.2	77.4		
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8		
PIRL	ResNet-50	57.2	83.8		
CPC v2	ResNet-161(*)	77.9	91.2		
SimCLR (ours)	ResNet-50	75.5	87.8		
SimCLR (ours)	ResNet-50 (2 \times)	83.0	91.2		
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6	1,	

Contrastive Language Image Pretraining [CLIP]



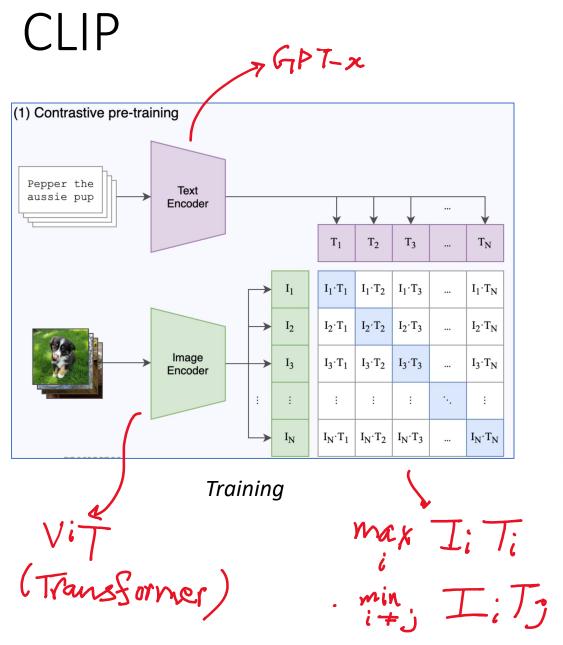
	Train (Encoding Stage)	Finetuning stage	Testing Stage	
Supervised	Data: ImageNet with labels Model: ResNet Output: ResNet Encoder	Data: Pascal data with labels Model: ResNet Encoder + RCNN classifier on top Output: Finetuned Enc + Classifier	Data : Pascal test data Model : Finetuned Enc + Classifer Output : Label	
Self supervised	Data : Imagnet without labels Model : SimCLR Output : Encoder	Data: Pascal data with labels Model: SimCLR Encoder + Linear / RCNN on top Output: Finetuned Enc + Classifier	Data: Pascal test data Model: Finetuned Enc + classifier Output: Label	
CLIP	Data : CLIP dataset (im-tx) Model : CLIP Output : Image Text encoder	NO FINETUNING	Data: Pascal test data + List of Labels Model: Image Text encoders Output: Label	

CLIP

- Move away from labels use natural language supervision instead
 - No need to collect ML grade data / crowdsourced labels anymore
 - Scalable! Take (image, text) pairs from the Internet
 - Use the power of language models
 - 300 million pairs!
- Utilize the label meaning
 - Don't just take Label ID mapping at test
 - Prompt Engineering
 - "cat" -> "a photo of one {cat}"
- Zero-shot inference
 - No gradients / backprop!
 - Just like GPT-3
 - Translation, QA, NER, Coreference, etc
 - All of them can be framed as prompts

```
'a bad photo of a {}.',
'a photo of many {}.',
'a sculpture of a {}.',
'a photo of the hard to see {}.',
'a low resolution photo of the {}.',
'a rendering of a {}.',
'graffiti of a {}.',
'a bad photo of the {}.',
'a cropped photo of the {}.',
'a tattoo of a {}.',
'the embroidered {}.',
'a photo of a hard to see {}.',
'a bright photo of a {}.',
'a photo of a clean {}.',
'a photo of a dirty {}.',
```

```
a jpeg corrupted photo of a {}.',
'a blurry photo of the {}.',
'a photo of the {}.',
a good photo of the {}.',
a rendering of the {}.',
'a {} in a video game.',
'a photo of one {}.',
'a doodle of a {}.',
'a close-up photo of the {}.',
a photo of a {}.',
the origami {}.',
the {} in a video game.',
a sketch of a {}.',
'a doodle of the {}.',
'a origami {}.',
a low resolution photo of a {}.',
```



convert to (2) Create dataset classifier from label text plane car A photo of Text dog a {object}. Encoder bird (3) Use for zero-shot prediction T_1 T_N T_3 **Image** $I_1 \cdot T_1$ $I_1 \cdot T_2 \mid I_1 \cdot T_3$ $I_1 \cdot T_N$ Encoder

Inference

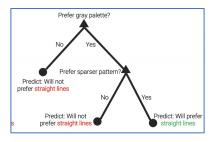
A photo of

a dog.

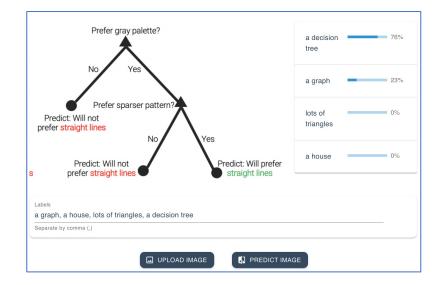
CLIP - Example

```
import torch
import clip
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
                                                                     (2)
image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)
with torch.no_grad():
   image_features = model.encode_image(image)
   text_features = model.encode_text(text)
   logits_per_image, logits_per_text = model(image, text)
   probs = logits_per_image.softmax(dim=-1).cpu().numpy()
print("Label probs:", probs) # prints: [[0.9927937  0.00421068  0.00299572]]
```

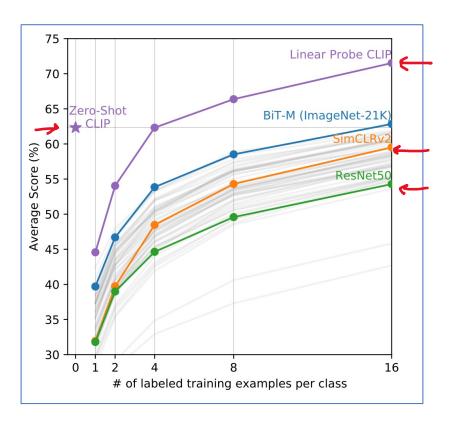
Lots of demos - https://clip.kiri.ai/
Curated list - https://bit.ly/3jzRVAt [Image -> Text, Text -> Image]



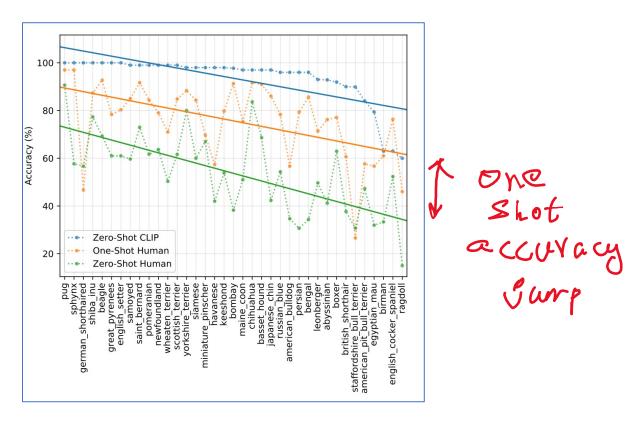
A graph
A house
Lots of triangles
A decision tree



CLIP Experiments – Good Representations



- Zero-shot CLIP much better than ResNet50 trained on ImageNet [in low labels regime]
- Also better than SimCLR [even without linear probe]
- Peculiar : CLIP + Linear Probe is worse than Zero-shot CLIP for 2-3 labels



Human performance improves with oneshot, two-shot cases

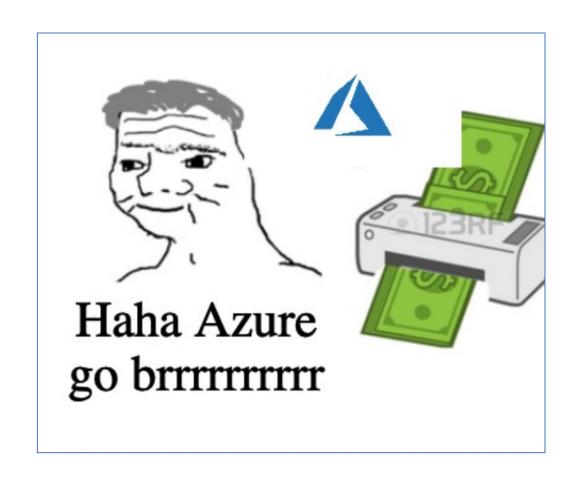
CLIP and Humans find difficulty in classifying for the same classes

CLIP Experiments - Robustness

- Models trained (supervised) on ImageNet don't transfer well even to small distribution shifts, such as: Sketches of same images, cartoons, diff backgrounds
- Zero-shot CLIP vastly outperforms supervised models against this distribution shift
- So, whenever we feel like using ResNet encoder it is better to try CLIP encoder instead ☺

Limitations / Comments

- Zero-shot CLIP isn't perfect
 - Only 88% accuracy on MNIST
 - Not so good with OCR / text-in-image scenarios
 - No matter how much data you scrap, there will always be out-of-data stuff
- Designing of Class labels [Prompt Engg]
 - Bad ways to use classify surveillance images as "criminal", "suspect", etc.
 - You can use any class labels and get a free classifier
- Expected improvements
 - Counterintuitive drop in accuracy for 1-shot, 2-shot
 - More push towards avoiding finetuning
 - More contextual knowledge in text labels physical, societal, geographical, etc.



Credits: Mark Saraoufim