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CollabColor: Creative Support System for Human-Human Synchronous
Collaboration

ANONYMOUS AUTHOR(S)

Humans are unique in working collaboratively by sharing and understanding intentions. However, digital collaboration is daunting,
especially in creative design life cycles, due to non-linear workflows and lack of micro-alignments coupled with the need for robust
network connectivity. We present a formative study with creatives to identify key themes in conflicts that arise in this space. We
introduce CollabColor, an intelligent system that aids in resolving conflicts for two users synchronously collaborating on a low-touch
creative task. More specifically, given an uncolored line-art on a canvas and a set of reference images from the users as input, we
provide non-obtrusive interventions during their real-time collaboration to ensure that the final colorization of the art is coherent,
and all the users’ aligned preferences are incorporated. CollabColor is a novel reinforcement learning-based approach that processes
the entire sequence of canvas states and user actions to provide assistance in the form of coloring actions that builds trust between
users, resulting in the discovery of a shared perspective and a win-win solution for their co-creation. We conduct extensive evaluation
using automated metrics and human studies showing that our interventions lead to coherent and preference-aligned colorizations. We
believe that CollabColor is an early step towards building automated social planning systems that facilitate and foster cooperative
interactions of a population to solve various global challenges.

CCS Concepts: •Human-centered computing→ User interface design; Collaborative interaction; • Computing methodologies
→ Reinforcement learning.
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1 INTRODUCTION

Collaboration is a process of accumulating shared information, aligning on choices, and acting on it together [112].
Collaboration happens everywhere – ranging from music bands to business meetings, and in co-editing documents. In
nature, we find several examples of species of ants or bees that live in large colonies and cooperate with optimal work
division to collect food and survive [51]. Ever since the Covid-19 pandemic raged, companies and institutions have
accelerated towards a “digital-first” approach of collaboration. However, due to lack of micro-alignments, excessive
hidden work, bad network connectivity, and an overall lack of common view, collaboration has shifted from unifying
and exciting to time-consuming and daunting [3].

The perils of digital collaboration are worsened in creative design workflows [104]. Art directors provide reviews
across the entire creative life cycle leading to a non-linear workflow with significant back-and-forth between ideation,
creation, and the feedback phases. In particular, the creation phase involves lots of conflicts among co-creators when
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Fig. 1. Within CollabColor’s user interface, two users S1 (top screen) and S2 (bottom screen) can understand each other’s perspective
and arrive at a coherent artwork. An angry emoticon intervention (1) is displayed on S2’s screen because she chose green color most
recently to fill the cloth on elephant which clashes with S1’s intentions of orange/red color for the cloth. The color for elephant’s body
in S2’s Peek intervention output (2) is a very light shade of green that is the closest to S1’s preferred light colors. Interventions such
as peeking, emoticons, collaboration score bars facilitate communication of intentions between users, resulting in fewer conflicts.

choosing appropriate colors, fonts, shapes, etc. wherein simple merging would lead to unpleasant outputs. Carefully
delegating individual tasks to creators and forgoing collaboration could be a solution, but a recent work by Parikh and
Zitnick [86] found that individual creators provide value, whereas collaboration leads to more novel and surprising
designs. This motivates us to focus on easing collaboration in the hard creation phase.

Prior to 1962, machines were largely seen as tools for solving heavy numerical problems. In 1962, Douglas Engelbart’s
[19, 29] proposal of using machines to augment human intelligence propelled researchers to think of them as real-time
interactive systems. Today, humans and machines collaborate in various disciplines to produce highly creative outcomes
[33, 41, 93]. Recent studies on human-AI co-creativity [50, 71] discuss the perception and utility of AI tools in supporting
creative work, especially in the discovery stage of design projects. However, the situation of two or more humans
collaborating on a creative task with AI as a support tool is still in nascent stages of exploration. A genre of creative
support tools called Casual Creators 1 [24, 80, 88, 106] have only been deployed recently as test-beds to understand
this scenario better. Building an AI system that aids two or more users not only in casual co-creative explorations, but
also in solving creative tasks poses several challenges: (i) the system must understand the creative motivations of all
users in context of the current state of artwork and arrive at a high-level shared perspective that adds value; then, (ii)
the system must promote low-level conflict-resolving actions during the co-creation process while not obstructing or
limiting the imagination of users.

1Casual Creators are tools that allow users to pursue their creative intentions casually without any pressure of achieving certain goals

2



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

CollabColor: Creative Support System for Human-Human Synchronous Collaboration IUI ’22, Mar 22–25, 2022, University of Helsinki, Finland

In this paper, we consider flat line-art colorization as our creative task motivated by the following reasons: (a) Given
the ambiguity in subjective definitions of creativity, the vast literature on colorization helps us define metrics to build
our system; (b) Flat colorization offers greater computational feasibility as compared to other creative tasks in exploring
a vast design space [13]; and (c) Research in psychology has shown that coloring aids in mindfulness and reduction of
anxiety in adults [72].

We introduce CollabColor, an intelligent reinforcement learning-based system that aids in resolving conflicts for two
users synchronously collaborating on flat line-art colorization. More specifically, given an uncolored line-art on a canvas
and a set of reference images from the users as input, we provide non-obtrusive interventions during their real-time
collaboration to ensure that the final colorization of the art is coherent, and all the users’ aligned preferences are
incorporated. Drawing inspiration from Mary Scannell’s Conflict Resolution games [95], we design a novel transformer
component in our system that sequentially processes sub-optimal canvas interaction trajectories and learns to facilitate
conflict-resolving actions among users during deployment.

This paper contributes:

• Insights into key conflicts that occur during co-creative task of flat line-art colorization, supported by a formative
study with creatives and a web-deployable implementation of CollabColor system to collaborate on the task

• The design of novel data simulator and reward functions that aid in preparing realistic trajectories of canvas
interactions, using techniques such as Behavior Cloning and Theory of Mind to imbue human biases

• The design of a transformer-based model architecture that learns from simulated interaction trajectories to give
greater importance to conflict-resolving actions

• Non-obtrusive UI interventions such as buttons for peeking, color prediction, & feedback scores derived from
the trained model to support creativity and ease collaboration of users working on CollabColor interface

• Evaluations with automated adversarial users to Stress test CollabColor, showing our effectiveness in incorporat-
ing preferences of both users and reducing conflicts in difficult real-world scenarios

• insights into flexibility that our system offers, using Recurrence Quantification Analysis
• Human studies and exploratory surveys on colorizations produced by CollabColor that show significant gains in
novelty of colorization, with system-suggested interventions aligning with those of human facilitators.

We envision CollabColor as an early step towards building automated facilitators that can not only aid in creativity,
but also in other social and professional domains to build trust, shared intentionality [103], and bring populations
together to solve pressing global challenges [27].

2 RELATEDWORK

CollabColor builds on related work in five key areas: (a) studies on support systems that enhance creativity; (b) automatic
colorization techniques and datasets/metrics therein; (c) studies on simulating realistic trajectories to train multi-agent
reinforcement learning (RL) systems; (d) deep neural RL models that learn from suboptimal offline trajectories; and
(e) human autonomy training (HAT) literature for evaluating our proposed system. We provide further discussion on
related work in Appendix B.

2.1 Support Systems for Collaboration and Creativity

CoDraw [52] presents two AI-based neural models called drawer and teller that interact to generate a clipart-based
scene. Each of these models can be used in isolation to assist humans in generating creative scenes. While this provides

3
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us a framework to reason about, we build a system that has a model to assist two humans collaborating on a creative
task. There are several works that consider this teller-drawer architecture to design assistive tools. For instance, Creative
Sketching Partner [50] presents an AI drawer that sketches variants for ideation based on user inputs of visual and
conceptual similarity. Casual Creators such as GANimals [30] foster data collection for human-human co-creativity but
do not consider ways to resolve conflicts.

There are other examples of interactive support systems such as Vocal Shortcuts for designing [53], StreamSketch
for livestreaming [70], Ideawall for collaborative ideation [99], and Scones [46] for sketching via natural language
commands but none of them build strong models for processing long sequences of user interactions and canvas states,
or intervene non-obtrusively to reduce conflicts.

While no previous work defines metrics for creative conflicts during colorization, Gu et al. [38] devise techniques for
understanding and aiding conflicts in textual domain. Kuiter et al. present variED [57] and define conflicts and data
structures for collaborative editing in the context of coding software. Similarly, Owhadi-Kareshk et al. [84] devises
features out of GitHub code versions to predict merge conflicts. We note that textual conflicts are easier to define using
metrics such as Edit Distance [121], as compared to creative conflicts that are ambiguous and subjective.

2.2 Interactive Colorization

Several works in Computer Vision literature tackle the problem of colorization of raster images [32, 65, 123? , 124].
Zhang et al. [123] devise a convolutional neural network that colors grayscale images into RGB images. Barnes et al.
[13] point out the vast design space of creative tasks like colorization and posit that user interactivity is paramount to
good colorizations. Motivated by this, Zhang el al. [124] further fine-tune their architecture to allow for interactivity
wherein users can pick pixels in the image and enlist their color preferences. However, none of these work in the
context of co-creativity that we approach in this paper. Furthermore, we approach colorization from the perspective of
SVG images instead of raster images. Prior work [14, 34] does exist for SVG colorization, but again not in the context of
iterative co-creation. Nevertheless, we rely on extensive work in colorization literature to define reward signals such as
harmony score [83, 94], and also to conduct human studies. We provide further discussion of colorization datasets in
Appendix C.

2.3 Simulation for Multi-agent Reinforcement Learning

RL training can be seen as an alternating optimization between finding good trajectories and finding good policies over
those trajectories [58]. Previous methods avoid optimizing for good trajectories by fixing them to episodes played by
expert demonstrators, and train RL agents to mimic the experts using imitation learning [9]. However, demonstrator
data collected in the formative study is neither sufficient nor diverse enough to train data-intensive deep supervised RL
algorithms. Also, RL training requires rewards either at the end of a sequence (sparse reward), or at each action turn
[64], which is not practical in online setups.

Recently, there has been a surge of self-play algorithms [42, 81] where the agents play with themselves and generate
good trajectories. This forgoes the expensive process of collecting large and diverse demonstrator data but requires very
long hours of training. We therefore simulate a dataset consisting of a sequence of user actions and approximate rewards
at each action turn without self-play. Like many previous works [58, 75, 78] we design a rule-based simulator along with
reward functions that approximate users’ payoff intentions. While such a simulation process has disadvantages like the
sim2real gap [47, 77, 125], the lack of interaction with real world environment can be offset by powerful supervised
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algorithms. Another difficulty is the requirement of strong domain knowledge to design reward functions [64]. We use
data from our formative study to impart domain knowledge and inductive biases into rewards.

2.4 Reinforcement Learning for Human-AI Collaboration and Creativity

Knott et al. [56] &Wu et al. [118] train agents for human-AI collaboration, but their tasks are confined to the Overcooked
environment [18] with well-defined sub-task division, explicit actions for cooperation, and visible spatio-temporal
conflicts. For instance, Wu et al. [118] employs principles from cognitive science [54] to build a multi-agent RL with two
AI agents that can coordinate to divide cooking actions into sub tasks and allocate low-level actions optimally. However,
research shows that such agents fail to coordinate and generalize when one of the players is a human [18, 22, 56].
Humans do not always take optimal actions that an AI agent might predict in a multi-agent setup, leading to poor
rewards at inference time. We employ techniques such as Behavior Cloning [12] and Theory of Mind [37] to explicitly
model humans [18] and arrive at richer simulated trajectories to alleviate issues of generalizations.

While previous works [49, 52, 61, 87] train RL agents for tasks such as coloring, sketching, or retouching in a
canvas-like environment, these tasks are not considered in the context of multiple user collaboration. We leverage a
3-agent real-time interactive setup that explicitly models humans and their preferences in CollabColor. We investigate
in a more challenging creative task space of flat colorization wherein no obvious creative sub task divisions exist,
cooperation occurs across a wide range of turns, and conflicts are not immediately perceivable.

3 FLAT COLORIZATION OF LINE-ARTS: INTERFACE DESIGN & CHALLENGES

Our goal is to obtain a sufficiently large dataset of uncolored line-arts and their corresponding colorized images that
can be leveraged to simulate two users iteratively coloring an image2.Since colorization is not the main contribution of
our work, we reduce our task to flat colorization of line-arts which is easier to deal with. We also require the line-arts
to have sufficient number of semantic segments so that the simulated sequences capture meaningful patterns and
interactions between the users.

3.1 Preparing Data for Colorization of Line-arts

�����������������������

�������
���������������

�	���������
������������

��������� ������������

����	�������
�����������

�����

Fig. 2. We use a popular image editing tool’s built-in tracing functionality to extract SVG image (colored) and uncolored line-arts.

We obtain flat colored raster images from the web and convert them to SVG images. Inspired by automatic generation
of fake images using Photoshop Scripting [111], we process a large batch of raster images and convert them to SVGs

2Note that we did not find publicly available datasets that matched our requirements, hence the need to first create our own uncolored images.
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using built-in tracing functionality of a popular image editing tool. Although raster-to-vector tracing is a hard task
[63], flat colored images with closed line segments are easier to trace. We thus obtain our dataset of 255797 SVG
images of 4418 unique line-arts, boiling down to nearly 58 alternate colorings per line-art. This captures the inherent
multimodality of the coloring process [20] and ensures that our images cater to a diverse set of users. Figure 2 shows a
schematic diagram of our data preparation pipeline. Figure 3(a) shows an uncolored line-art with six alternate colorings
and associated tags. From Figure 3(b), we can see that our images in our dataset contain 30 segments on average,
making it feasible for two users to iteratively color and impart their preferences. For our task, each SVG image can be
considered as a list of segments. Each segment contains features such as area, centroid, color, and path length which are
computed with the help of the svgpathtools [2] library. We discuss alternate approaches of preparing data for our task
in Appendix C

Fig. 3. Part (a) demonstrates six alternate colorings of the same line-art capturing the inherent multimodality and diversity of
colorization process [20]. Part (b) demonstrates a histogram of the number of segments per SVG image in our data. Values are
computed over unique line-arts.

3.2 User Interface Design

To understand the pain points of creative collaboration, we build a user interface (UI) that enables two users to color a
line-art simultaneously. Figure 4 shows screens of two users (S1 and S2) coloring the line-art of an elephant. Our UI
is inspired from collaborative interfaces such as Miro, Figma 3, etc. to provide a realistic experience to the users. We
use Twilio’s[6] real-time state synchronization API to enable synchronous coloring. Collecting reference/inspiration
images into a moodboard to diversely color an artwork is a standard practice in designer’s toolbox [71]. We mimic this
scenario by providing two inspiration images to each user that cater to certain emotions, using the Behance Artistic
Media (BAM) dataset [114]. Here, user S2 gets peaceful/calm images in the form of sceneries, large green fields, etc.
Colors can be picked either from the palette or from the canvas. We also display the most recent color picked by each
user to aid in understanding each other’s preferences. Here, users S1 and S2 have last picked violet and green colors
respectively. Once both the users are done with iterative coloring the current line-art and click the “Done/Next” button,
we proceed to the next line-art.

3https://miro.com/, https://www.figma.com/
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Fig. 4. Screens of two users S1 (top) and S2 (bottom). Users can pick colors from the palette based on their inspiration images to color
the line-art displayed in the canvas. The various components of our UI are labelled in the red boxes. User S1’s inspiration images
present a happier emotion with bright hues; User S2’s images present a peaceful emotion with light green hues

3.3 Formative Study

We conduct a formative study in three modes by altering the type of reference images displayed (no images, ground-truth
(GT) images,& inspiration images) with 20 user pairs consisting of novices (undergrad students) and experts (designers).
We ask the users not to communicate via any other medium beyond the canvas. While several collaborative platforms
provide users with options to video/voice-call or chat via text, we intend to study scenarios wherein users do not have
means to communicate either due to poor network quality or lack of cognitive bandwidth [39]. At each click (action /
turn) 𝑡 for a given SVG image on canvas, we record a triplet (𝑢𝑡 , 𝑠𝑡 , 𝑐𝑡 ) corresponding to the user 𝑢𝑡 (𝑢1or 𝑢2) coloring
a segment 𝑠𝑡 (segment ID in the SVG image) with color 𝑐𝑡 . We also restrict the number of turns per user to 𝑇 = 100.
Additionally, we conduct informal interviews and query users about their experience and ways in which they prefer to
be assisted. We identify several key themes in conflicts that arise while collaborating on our creative task.

F1: Understanding intentions is hard. Users found it difficult to relay their intentions just using colors on the
canvas. Given that our task involves creative decision making, communication becomes paramount to arrive at a
coherent colorization. Users could not verbally communicate in our setup, leading to several conflicts. They take multiple
actions with excess recoloring in an attempt to align their preferences. Table ?? shows the average number of actions
taken to color line-arts. We see that when inspiration image were not provided, the number of actions taken were more
than twice the average number of segments. Around 12% of all sequences had lengths greater than 80, indicating the
long duration of the task. Cross-recoloring conflicts are particularly dissatisfying to the users, wherein a user alters the
color of the segment colored by the other user. Formally, a recoloring action is recorded when a user alters the color
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Table 1. Formative study of our user interface with three modes varying the reference images (no image, GT images, inspiration
images from BAM dataset). The value 𝑁 indicates the number of SVG line-arts colored by our user pairs. Arrow mark (↑) indicates
that higher value is typically better.

Mode
Avg no.
of actions

(↓)

%
Recoloring

(↓)

% Cross
Recoloring

(↓)

%
Reversion

(↓)

Dominance
Score
(↓)

Common-
sense

Score (↑)

Harmony
Score
(↑)

No Image
(N = 77) 62.6 31% 17% 8.0% 0.32 0.11 0.34

GT Images
(N = 20) 49.8 28% 10% 11.0% 0.37 0.26 0.41

Inspiration
Images (N = 229) 33.7 30% 12% 11.7% 0.47 0.21 0.42

of an already colored segment. Let 𝑆1, 𝑆2, . . . , 𝑆 |𝑆 | represent segment IDs of a given line-art where the total segment
count is |𝑆 |. Then, the count of recoloring actions is given by

∑𝑇
𝑡=1

∑𝑁
𝑖=1 𝐼 (𝑠𝑡 = 𝑆𝑖 ) − |𝑠1, 𝑠2, . . . , 𝑠𝑇 |, where 𝐼 (.) is the

indicator function 4, and |.| is the count of unique segments in each sequence.
Of these actions, cross-recoloring actions (for user 1) are given by,

∑𝑇
𝑡=1

∑𝑁
𝑖=1 𝐼 (𝑠𝑡 = 𝑆𝑖 , 𝑢𝑡 = 𝑈1, 𝑓𝑢 (𝑆𝑖 ) = 𝑈2), where

𝑓𝑢 (𝑆𝑖 ) denotes the user that previously colored the segment 𝑆𝑖 . We also compute the number of reversion actions
wherein users take an undo turn, that is, revert the current action by returning to the previous state. Table ?? shows the
percentage of all these actions. We see that the recoloring actions are lower in the mode with GT images, whereas they
are high with no images. This may be due to the provision of expected outputs through GT images, which helps in
giving a definitive goal for users to pursue at the cost of limiting their novelty and imagination.

F2: Varying pace of actions leads to multiple conflicts. Some users color extremely fast and dominate, giving
no opportunity to the other user to think or act. This forces the preferences of one user over the other and leads to
skewed turn-taking and inaction from dominated users. To measure this effect, we define a metric called dominance

score. Formally, dominance of user𝑈1 over user𝑈2 is given by
∑𝑇
𝑡=1 𝑒𝑥𝑝 (−𝜆𝑡) (𝐶𝑜𝑢𝑛𝑡1 (𝑢1:𝑡 ) −𝐶𝑜𝑢𝑛𝑡2 (𝑢1:𝑡 )) /𝑍 where

𝐶𝑜𝑢𝑛𝑡𝑘 (𝑢1:𝑡 ) =
∑𝑡
𝑖=1 𝐼 (𝑢𝑖 = 𝑈𝑘 ) represents the number of actions taken by user𝑈𝑘 so far and 𝑍𝑑 is a normalization

factor. We sum the excess number of actions taken by one user over the other after each action, to capture the cumulative
impact of dominance. Note that dominating actions at the beginning of the task are more impactful than those that
occur towards the end because early actions determine the overall mood and direction of colorization. We thus multiply
an additional 𝑒𝑥𝑝 (−𝜆𝑡) factor with 𝜆 = 0.05 to capture the decreasing impact of dominating actions. Normalization
factor 𝑍𝑑 is the dominance score when only one user takes all the actions (with 𝑇 = 100), given by is 3.84. Table ??
displays the average value of dominance scores over all sequences in each mode. A higher dominance score indicates
greater number of conflicts.

While our measure is not perfect, we found that it correlates well with users’ feelings based on our informal questions.
Figure 5(a) shows a qualitative sequence of high dominance score leading to conflicts and overall poor output. Until
action turn 𝑡 = 10, user𝑈1 forces his preference of blue hue while user𝑈2 barely imparts her greenish hue to the canvas.
This leads to a creative conflict and𝑈2 cannot visualize how to bring about the greenish hue. By action turn 𝑡 = 25,𝑈1

recolors most of the area colored by𝑈2, while 𝑈2 is yet to find a possible middle ground. Towards action turn 𝑡 = 40,

4Indicator function 𝐼 (𝐶) is equal to 1 if the condition𝐶 is true, else it is equal to 0
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𝑈2 decides to help 𝑈1 by altering her preferences and takes up colors with dark blueish/purple hue, recoloring and
corrupting some areas that 𝑈1 has already colored. The final output lacks coherence and is misaligned to both their
preferences. Moreover, both users have a unpleasant experience collaborating, leading to a lose-lose collaboration [95].

Fig. 5. Part (a) demonstrates a sequence showing the conflicts that arise due to varying pace of actions. One user typically takes
more moves and dominates the other in terms of overall direction of the colorization. Part (b) demonstrates the line-art of an elephant
colored by users in the mode with inspiration images (shown at the bottom). As evident, the quality is poor with incoherent colors for
the feet and body of elephant.

F3: Novice users need help in aligning preferences. Conflicts arise when rules of symmetry are broken, such as,
legs of an animal having different colors. Some users found it difficult to match each other’s preferences while not
violating spatial symmetry. From Figure 5(b), we can see that the body and legs of elephant are colored differently,
leading to an incoherent output. We define a metric called common-sense score to capture this scenario, given by the
average number of color matches for any two segments that have the same ground-truth color. Formally, common-sense
score is

Σ𝑇𝑡=1Σ
|𝑆 |
𝑖=1Σ

|𝑆 |
𝑗=1, 𝑗≠𝑖 𝐼

(
𝐶𝐺𝑇 (𝑆𝑖 ) = 𝐶𝐺𝑇

(
𝑆 𝑗
)
,𝐶𝑡 (𝑆𝑖 ) = 𝐶𝑡

(
𝑆 𝑗
) )
/𝑇 (1)

where 𝐶𝐺𝑇 (.) gives the ground-truth color of a segment and 𝐶𝑡 (.) gives the color of a segment at turn 𝑡 . Note that our
score is a approximate measure as it is impossible to take all rules of symmetry into consideration. For instance, our
score penalizes the case when shirt and trousers of a boy have the same colors in ground-truth image but users in the
study have colored it differently, which does not break any rule of symmetry. In our interviews, users felt that there
were too many colors to choose from and it was very unclear to arrive at harmonious color combinations. We use the
notion of harmony model H(𝑐1, 𝑐2) [15, 83, 94] to quantify this scenario, which computes the harmony between two
colors by quantifying the hue, luminance, and chroma effects. Formally, harmony score is given by

Σ𝑇𝑡=1Σ
|𝑆 |
𝑖=1Σ

|𝑆 |
𝑗=1, 𝑗≠𝑖

��(𝑥𝑖 , 𝑦𝑖 ) − (
𝑥 𝑗 , 𝑦 𝑗

) ��
2

𝑍ℎ
𝐻

(
𝐶𝑡 (𝑆𝑖 ) ,𝐶𝑡

(
𝑆 𝑗
) )
/𝑇 (2)

where the harmony model’s outputs are scaled with the 𝐿2 distance between centroids (𝑥𝑖 , 𝑦𝑖 ) of each segment 𝑖 to
capture the fact that the coloring is harmonious over a wide area of the line-art. Normalization factor 𝑍ℎ is given
by Σ

|𝑆 |
𝑖=1Σ

|𝑆 |
𝑗=1, 𝑗≠𝑖

��(𝑥𝑖 , 𝑦𝑖 ) − (
𝑥 𝑗 , 𝑦 𝑗

) ��
2. A low score on either of the above defined metrics indicates a high chance of

conflicting experience.
Qualitatively, users found the mode with no inspiration images to be very tricky to deal with, since they were not sure

if the overall canvas was heading in the right direction. The mode with GT images was too obtrusive and provided no
9
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means to think in a novel fashion. The mode with inspiration images was preferred greatly since it provided a reference
to compare the canvas with, while also allowing users to be creative and choose novel colors. Overall, many users lacked
clarity in dividing the canvas into two meaningful parts, delegate their preferences, and collaborate seamlessly. They
were open to assistive systems that can ease their collaborative experience to arrive at a win-win situation [95], while
being non-obtrusive. Our qualitative findings coincide with the observation in Main and Grierson [71] that creatives
are open to AI-based support tools provided they do not minimize the role of the creative.

3.4 Design Goals for Interventions

Based on our formative studies, analysis, and literature review, we identify the following design goals to build interven-
tions that aid in creative collaboration of users during our colorization task:

• G1 Facilitate communication of intentions and aid in resolution of conflicts. Users generally want to align preferences
and help each other out. They prefer taking fewer steps to color, avoid cross-recoloring [F1] and domination
[F2], etc. that also aid in building trust. Thus, interventions that can imagine the canvas in the context of user
preferences and relay intentions from one user to the other can help in converging their perspectives.

• G2 Provide feedback on collaborative strength and overall quality of colored line-art. Users prefer to track their
performance on the task which can help in ensuring that they are not too dominant at any stage of coloring [F2].

• G3 Provide assistive tools to color harmoniously. Novice users feel overwhelmed by the multiple segments and
color choices provided to them leading to spatial (symmetry) conflicts [F3]. Thus, interventions that can sensibly
reduce the available choices while staying true to user preferences add significant value.

• G4 Interventions should be non-obtrusive. A common prerequisite of all creative assistance tools [71] is that they
should not interfere in the task and hinder the imagination of users. Previous research [86, 95] has shown that
initial conflicts can lead to a more creative final product.

Simple hard-coded algorithms based on user action counts or segment color counts may help with tracking the state
of the canvas, but they do not understand the semantics of the canvas or how user preferences interact with the canvas.
Moreover, hard-coded algorithms do not take the sequential action history into account beyond simple count statistics.
We thus approach the above goals by training a deep supervised reinforcement learning (RL) based algorithm that acts
as a facilitator between the two users. We choose deep RL technique because it suits our requirement of sequentially
processing the entire history of user actions and canvas states and outputting an optimal intervention that can meet the
above goals. We also prefer the supervised version of RL owing to the success of supervised methods and architectures
over the past decade.

4 SIMULATING USER INTERACTION TRAJECTORIES TO TRAIN THE RL SYSTEM

The formal setting of our problem is a multi-agent Markov Decision Process (MDP) consisting of 𝑛 players that process
the state (observation) 𝑂 and take actions 𝐴(𝑖) based on their respective policies 𝜋 (𝑖) for 𝑖 = 1 . . . 𝑛. Given policies for
all agents, a trajectory/episode 𝜏 can be sampled as follows: start with a state𝑂0, repeatedly sample actions {𝑎 (𝑖)𝑡 } from
{𝜋 (𝑖) } and update the state to𝑂𝑡+1. The shared objective is to maximise the reward which is given by the average value
of Σ𝑡𝛾

𝑡𝑅

(
𝑠𝑡 , 𝑎

(1)
𝑡 , . . . , 𝑎

(𝑛)
𝑡

)
over all trajectories where 𝑅 (.) is the reward function and 𝛾 is the discount factor [56].

Once we embed a human policy 𝜋𝐻 as one of the agents in the multi-agent MDP setup, our problem reduces to a partially
observed MDP (POMDP) and the optimal agent policy can be learned using an RL algorithm. Our case of line-art
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colorization consisting of two users and an AI assistive agent to resolve conflicts boils down to a human-human-AI
3-agent MDP setup, in which we embed human policies to train the AI agent.

Having formulated a POMDP, we simulate a dataset consisting of a sequence of user interactions and approximate
rewards at each action turn without self-play, as discussed in Section 2. We offset the limitation of lack of interaction
with real world environment by utilizing powerful supervised algorithms for training. We use data from our formative
study to impart domain knowledge and inductive biases into rewards.

4.1 Behavior Cloning to learn Human Models

Building on the work of Carroll et al. [18], we use the technique of behavior cloning (BC) to train human models
that can be embedded into environment to arrive at a POMDP. BC learns a human policy 𝜋𝐻 by directly mapping
human-human observations to actions using supervised learning [12]. From the 𝑁 = 129 joint trajectories of triplets
{(𝑢𝑡 , 𝑠𝑡 , 𝑐𝑡 )}𝑇𝑡=1 collected in mode 3 (with inspiration images) of our formative study, we prepare two single agent
trajectories {

(
𝑢1, 𝑠1

𝑡 , 𝑐
1
𝑡

)
}𝑇
𝑡=1 and {

(
𝑢1, 𝑠2

𝑡 , 𝑐
2
𝑡

)
}𝑇
𝑡=1 where (𝑠𝑖 𝑡 , 𝑐𝑖 𝑡 ) = (𝑠𝑡 , 𝑐𝑡 ) if user 𝑢𝑖 has taken the action else

recorded as a noop (no action). We thereby obtain 𝑁 ′ = 258 trajectories of length𝑇 = 100. We now prepare the partially
colored line-art states {𝑂𝑡 }𝑇𝑡=1 by applying colors to the segments specified by the actions. Note that states observed by
both users at each turn are same. We convert each state to a vector representation using the CLIP Image (ViT-B/32)
model [28, 89] and use it as input to two BC models – User Segment Selector 𝐵𝐶𝑂→𝑠 , that predicts the segment a user
would select based on the line-art state; User Color Selector 𝐵𝐶 (𝑂,𝑠)→𝑐 , that predicts the color a user would select
based on the state and given segment. Figure 6 depicts the input and output of both the models which together form
the human policy 𝜋𝐻 . Note that input to 𝐵𝐶 (𝑂,𝑠)→𝑐 is a concatenation of the CLIP representation of canvas state and
one-hot representation5 of segment.

Fig. 6. Behavior Cloning models used: (left) User Segment Selector 𝐵𝐶𝑂→𝑠 , (right) User Color Selector 𝐵𝐶 (𝑂,𝑠 )→𝑐 , which form the
human policy 𝜋𝐻 .

Training and validation sets obtained using an 80 : 20 split on 25800 (𝑁 ′ ×𝑇 ) observations to study BC models.
Like all traditional multi-class classification tasks, we use a feedforward fully connected neural network (NN) with a
softmax6 layer at output for both models and select the output with maximum probability. The models do not achieve
high accuracy owing to a small non-diverse dataset. Also note that they do not take any context such as history of user
actions or inspiration images into consideration.

5An array of bits where only the corresponding position of the segment is set to 1, and all other bits are set to 0. Size of the array is equal to the number
of segments in the line-art.
6Softmax layer takes a vector of 𝐾 real numbers [𝑧1, 𝑧2, . . . , 𝑧𝐾 ] as input, and normalizes it to a probability distribution consisting of 𝐾 probabilities,

where the 𝑘𝑡ℎ probability is given by 𝑒𝑥𝑝 (𝑧𝑘 )
Σ𝐾
𝑖=1𝑒𝑥𝑝 (𝑧𝑖 )
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4.2 Improving Human Models with Theory of Mind

To improve the quality of human policy 𝜋𝐻 , we use the concept of Theory of Mind (ToM) [22, 37] that allows 𝜋𝐻 to
reason about other agents’ decisions and mental states. ToM proposes a framework to arrive at the intentions of other
players based on state observations and is widely used in human-robot interaction literature [22] to imbue models
with biases that humans display. At every turn, a ToM agent first chooses a high-level subtask to pursue, known
as the strategic choice. Once the strategic planning is complete, the agent next chooses a low-level action to tackle
the subtask, known as the motion choice. While Knott et. al. [56] build a parameterized ToM agent by learning from
human-human data and anecdotal evidence, we rely on our formative study and analysis to imbue biases and directly
set the parameters. We consider biases such as tendency to recolor [F1], tendency to dominate [F2], and tendency to
accept model suggestions [F3] in our formulation.

Note that [56] works with a simpler Overcooked environment where strategic choices and motion choices are well
defined. In our case, creative choices are difficult to arrive at – users may have different creative perspectives of the
line-art which cannot be codified. We consider a simple definition in which segment picking and color picking are
deemed as strategic and motion choices respectively. In the following paragraphs, we describe how 𝜋𝐻 powered with
ToM can be embedded into the environment and simulate valid user action sequences.

Prepare the Canvas. With the goal of simulating an action sequence with conflicts that closely matches two users
coloring together, we first prepare the canvas by sampling a line-art with one of its ground-truth (GT) image from our
data in Subsection 3.1. Since the color palette in our UI consists of 56 fixed colors (see Figure 4), we represent the colors
in the GT image as a 56-dimensional binary vector, called GT palette 𝑃𝐺𝑇 . A value of 1 at the 𝑖𝑡ℎ index in 𝑃𝐺𝑇 indicates
that the GT image contains the color 𝑖 . Note that we use GT image and its colors as a form of “peeking” into the output
akin to [43, 124], which denotes the users’ common-sense ability to imagine the final output of an uncolored line-art.

Recent studies have shown that CLIP model [89] contains abstract multimodal neurons that accurately represent
facets such as line-arts and sketches [36]. We thus use the CLIP model to represent our canvas line-art state, akin to
the vector representation in Subsection 4.1. As the line-art gets subsequently colored in the simulation, we update the
canvas state and its vector representation accordingly to arrive at a sequence of canvas states {O𝑡 }𝑇𝑡=1. Figure 7 shows
a schematic diagram of the simulator pipeline, in which the line-art of an owl is chosen.

Prepare the users and their preferences. We simulate two users and their respective preferences (inspiration
images) to replicate a moodboard-like scenario. We restrict our preferences to four emotions (happy, gloomy, scared,
peaceful) of the BAM dataset [114] and leave further personas for future work. We sample an emotion for each user
and obtain the most common colors for that emotion from the BAM dataset, denoted by a 56-dimensional binary vector
𝑃𝐸
𝑖
(𝑖 = 1, 2) [102]. We then pick a small fraction of colors from GT image to add to the preferences of both the users.

These overlapping colors, denoted by 𝑃𝑜𝑙 , enable a common ground scenario when 𝑃𝐸
𝑖
are completely disjoint. The

final representation of a user (U𝑖 ) is a 62-dimensional vector consisting of a 2-dimensional one-hot vector 𝑣𝑖 (𝑢) for the
user ID, 4-dimensional one-hot vector 𝑣𝑖 (𝑒) for the emotion, and a 56-dimensional binary vector (𝑃𝑈

𝑖
) conveying the

color preferences.

𝑃𝑈𝑖 =

(
𝑃𝐺𝑇 ∩ 𝑃𝐸𝑖

)
∪ 𝑃𝑜𝑙 (3)

U𝑖 =

[
𝑃𝑈𝑖 , 𝑣𝑖

(𝑒) , 𝑣𝑖 (𝑢)
]

; 𝑖 = 1, 2 (4)

We set one of the two users randomly to be more dominant to incorporate our finding [F2] from the formative study and
assign a dominance probability 𝑝𝑑𝑜𝑚 . The value 𝑝𝑑𝑜𝑚 = 0.7 is computed from sequences of mode 3 (with inspiration
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Fig. 7. Schematic diagram of our novel simulator that generates trajectories for our co-creation task. We direct readers to Appendix E
for enlarged images of each step. Best viewed in color.

images) as the average ratio of the number of actions the dominating user takes to the total number of actions. In
Figure 7, two users U1 and U2 are chosen with happy and peaceful preferences respectively, with user U1 being more
dominant. We now describe the three picker modules that govern the simulator’s turn-taking process.

User Picker. The first module picks a user at action turn 𝑡 , denoted by 𝑢𝑡 . We sample 𝑢𝑡 (∈ 1, 2) from a Bernoulli
distribution given by, 𝑢𝑡 ∼ Bern (𝑝𝑑𝑜𝑚) to incorporate [F2], that is, the user’s tendency to dominate. In Figure 7, the
user picker module picks U2.

Strategic Choice: Segment Picker. The second module picks a segment 𝑠𝑡 (∈ 1 . . . |𝑆 |) to be colored by user 𝑢𝑡 by
following one of the three mechanisms described in Appendix E. The representation of a segment 𝑖 (S𝑖 ) is a ( |𝑆 | + 3)-
dimensional vector consisting of the concatenation of one-hot vector of the segment (𝑣𝑖 (𝑠) ), area of the segment, and
centroids of the segment [2], where |𝑆 | is the number of segments in the chosen line-art. In Figure 7, the segment picker
module chooses the third mechanism of cross-recoloring (segments colored by U1 before) and uses the human policy
𝜋𝐻 (𝐵𝐶𝑂→𝑠 ) to pick the owl body segment.
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Motion Choice: Color Picker. The third module picks a color 𝑐𝑡 (∈ 1 . . . 56) given the user 𝑢𝑡 and segment 𝑠𝑡 by
following one of the three mechanisms described in Appendix E with equal probability. As explained earlier, each
color 𝑖 is represented by a 56-dimensional one-hot vector C𝑖 . In Figure 7, the color picker module chooses the second
mechanism of picking the closest color to GT color from U2’s palette and recolors the body segment with an olive color.
Having obtained the action triplet (𝑢𝑡 , 𝑠𝑡 , 𝑐𝑡 ), we update the line-art by coloring 𝑠𝑡 with 𝑐𝑡 and recompute the CLIP
representation of canvas state asO𝑡+1. The turn-taking process terminates when 𝑡 = 100.

Rewards. Our design goals [G1, G3] are to facilitate easy resolution of conflicts while obtaining a coherent colorization
that respects both users’ preferences. We incorporate metrics from the formative study to prepare reward signals that
approximate our goals. The RL agent we subsequently train receives information about our goals via these reward
signals and learns when to intervene while observing the environment. The following rewards are computed at every
turn and combined using a weighted sum to form the total reward signal 𝑅𝑡 :

• 𝑅𝑝𝑟𝑒 𝑓 [G1]: Promotes alignment of preferences. It is set to 1 when the picked color 𝑐𝑡 lies in the intersection of
both users’ color palettes, that is, 𝑃𝑈1 ∩ 𝑃𝑈2 ; else it is set to 0.

• 𝑅𝑑𝑜𝑚 [G1]: Promotes equal turn-taking and discourages dominance of one user over the other. It is similar to the
negated value of dominance score [F2] defined in Subsection 3.3, but computed only till turn 𝑡 .

• 𝑅𝑐𝑠 [G3]: Encourages sensible colorization and falling back to ground-truth colors when unsure. It is similar to
common-sense score [F3] defined in Subsection 3.3 and is given by

𝑅𝑡
𝑐𝑠 = Σ

|𝑆 |
𝑗=1𝐼

(
𝐶𝐺𝑇

(
𝑆 𝑗
)
= 𝐶𝐺𝑇

(
𝑆𝑠𝑡

)
,𝐶𝑡

(
𝑆 𝑗
)
= 𝑐𝑡

)
/|𝑆 | (5)

Intuitively, we reward the case when two segments that have the same color in ground-truth coloring also have
the same color in simulated sequence.

• 𝑅ℎ𝑎𝑟 [G3]: Promotes harmony between color preferences of each user. It is similar to harmony score [F3] defined in
Subsection 3.3 and is given by

𝑅𝑡
ℎ𝑎𝑟 = Σ

|𝑆 |
𝑗=1, 𝑗≠𝑠𝑡

�� (𝑥𝑠𝑡 , 𝑦𝑠𝑡 ) − (
𝑥 𝑗 , 𝑦 𝑗

) ��
2

𝑍ℎ
𝐻

(
𝑐𝑡 ,𝐶𝑡

(
𝑆 𝑗
) )

(6)

• 𝑅𝑑𝑖𝑣 : Promotes diversity and discourages the colorization of line-art with a single color. It is given by the ratio of the
number of unique colors in the partially colored line-art to the total number of available colors (= 56) at turn 𝑡 .

Additionally, we also sample a value 𝑝𝑎𝑐𝑐𝑒𝑝𝑡𝑡 ∼ 𝑈𝑛𝑖 𝑓 (0, 1) that denotes both users’ tendencies to consider suggestions
provided by our moderator agent that we will eventually train. We model this bias aspect because not all users want to
consider an AI model’s assistance [F3]. Note that we do not explicitly simulate an AI agent within our action sequences.
We consider these sequences with an assumption that the users are already aware of the AI agent’s suggestions.
When 𝑝𝑎𝑐𝑐𝑒𝑝𝑡𝑡 > 0.5, it denotes that the users have taken actions by incorporating the suggestions of the agent.
When 𝑝𝑎𝑐𝑐𝑒𝑝𝑡𝑡 < 0.5, it denotes that the users have ignored our agent’s help. The value 𝑝𝑎𝑐𝑐𝑒𝑝𝑡𝑡 plays a crucial role
when training the agent as it enables the loss function (defined in later sections) to penalize turns wherein the users
incorporated the suggestions and yet recorded a low reward.

To summarize, we obtain the following list of items
[
O𝑡 ,U𝑢𝑡 ,S𝑠𝑡 ,C𝑐𝑡 , 𝑅𝑡 , 𝑝

𝑎𝑐𝑐𝑒𝑝𝑡
𝑡

]
for 𝑡 = 1 . . . 100 as the simulated

sequence for chosen line-art. We compute several such sequences for each line-art and use them as RL training data.
We compute metrics from Table ?? and quantitatively verify that our sequences are close to mode 3 (with inspiration
images).

14



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

CollabColor: Creative Support System for Human-Human Synchronous Collaboration IUI ’22, Mar 22–25, 2022, University of Helsinki, Finland

5 SYSTEM ARCHITECTURE

Uncertainty in creative task divisions occur due to a lack of communication of intentions between users [118], and also
due to the inherent multimodality of the coloring task [20]. Given our highly uncertain scenario with many correct
plans of action, we delegate the final segment and color choices to users’ creative agency and only act as a “moderator”
or “facilitator” between them to ease communication and make aligned choices. We thus envision CollabColor to be a
contextual memorization engine that recognizes and gives higher importance to conflict-resolving actions and conveys
those actions to users via interventions on the user interface.

5.1 System Configuration at Train Time

For the CollabColor system to act as a good facilitator between two users, it is vital that the model internally develops a
rich representation of all previous states and actions that the users have taken and distil key information about their
preferences. The agent also has to plan ahead and imagine a future in which both their inspirations are incorporated to
arrive at a collaborative win-win situation [95], while maintaining a coherent colorization. To achieve these properties,
we consider a novel transformer decoder architecture building on [21] that autoregressively models the simulated
trajectories. Figure 8 shows the architecture of our system at train time.

Fig. 8. Transformer decoder (two blocks) architecture of our novel CollabColor moderator system. At train time, learning on offline
simulated trajectories is modelled as a sequential learning problem, akin to language modelling in NLP. Masked self-attention in
transformer block ensures that the inputs at any turn attend only to previous inputs. We employ teacher forcing to train the model
using losses accumulated on predictions. Details of the transformer block are deferred to original papers [90].

Let us consider a simulated trajectory 𝜏 =
(
𝑅1,O1,U𝑢1 ,S𝑠1 ,C𝑐1 , 𝑅2,O2,U𝑢2 ,S𝑠2 ,C𝑐2 , . . . , 𝑅𝑇 ,O𝑇 ,U𝑢𝑇 ,S𝑠𝑇 ,C𝑐𝑇

)
where 𝑅𝑡 = Σ𝑇

𝑡 ′=𝑡𝑅𝑡
′ is the returns-to-go value indicating the future desired returns. For every turn 𝑡 , we use linear
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layers and add a positional encoding 𝑝𝑡 to compute the representations of inputs to the transformer block:[
𝑖𝑅𝑡 ; 𝑖𝑂𝑡 ; 𝑖𝑈𝑡 ; 𝑖𝑆𝑡 ; 𝑖𝐶𝑡

]
= [𝑊 𝑅𝑅𝑡 + 𝑝𝑡 ; 𝑊𝑂 O𝑡 + 𝑝𝑡 ;𝑊𝑈 U𝑢𝑡 + 𝑝𝑡 ; 𝑊 𝑆 S𝑠𝑡 + 𝑝𝑡 ; 𝑊𝐶C𝑐𝑡 + 𝑝𝑡 ] (7)

where 𝑝𝑡 ∈ R𝐷×1,𝑊 𝑅 ∈ R𝐷×1,𝑊𝑂 ∈ R𝐷×512,𝑊𝑈 ∈ R𝐷×62,𝑊 𝑆 ∈ R𝐷×( |𝑆 |𝑚𝑎𝑥+3) , and𝑊𝐶 ∈ R𝐷×56 are learnable
matrices. Note that we pad segment vectors to arrive at a common length of ( |𝑆 |𝑚𝑎𝑥 + 3) for batched computations
where |𝑆 |𝑚𝑎𝑥 is the maximum number of segments present in any line-art of the given batch. We now prepare a
sequence of context length 𝐾 consisting of 5𝐾 inputs and use masked causal self-attention in the transformer block
mirroring GPT [90] to obtain output embedding for each input:

ℎ0 =

[
𝑖𝑅𝑡−𝐾 ; 𝑖𝑂𝑡−𝐾 ; 𝑖𝑈𝑡−𝐾 ; 𝑖𝑆𝑡−𝐾 ; 𝑖𝐶𝑡−𝐾 ; 𝑖𝑅𝑡−𝐾+1 ; 𝑖𝑂𝑡−𝐾+1 ; 𝑖𝑈𝑡−𝐾+1 ; 𝑖𝑆𝑡−𝐾+1 ; 𝑖𝐶𝑡−𝐾+1; ...; 𝑖𝑅𝑡 ; 𝑖𝑂𝑡 ; 𝑖𝑈𝑡 ; 𝑖𝑆𝑡 ; 𝑖𝐶𝑡

]
(8)

ℎ𝑙 = transformer_block
(
ℎ𝑙−1

)
∀𝑙 ∈ [1, 𝐿] (9)

=⇒ ℎ𝐿 =

[
𝑧𝑅𝑡−𝐾 ; 𝑧𝑂𝑡−𝐾 ; 𝑧𝑈𝑡−𝐾 ; 𝑧𝑆𝑡−𝐾 ; 𝑧𝐶𝑡−𝐾 ; 𝑧𝑅𝑡−𝐾+1 ; 𝑧𝑂𝑡−𝐾+1 ; 𝑧𝑈𝑡−𝐾+1 ; 𝑧𝑆𝑡−𝐾+1 ; 𝑧𝐶𝑡−𝐾+1; ...; 𝑧𝑅𝑡 ; 𝑧𝑂𝑡 ; 𝑧𝑈𝑡 ; 𝑧𝑆𝑡 ; 𝑧𝐶𝑡

]
(10)

where 𝐿 is the number of transformer blocks. We use masking to ensure that the output embeddings at any turn do
not attend to future inputs. For instance, 𝑧𝑈

𝑗
at position 𝑗 attends to the inputs at previous positions [𝑖𝑅

𝑡−𝐾 ; 𝑖𝑂
𝑡−𝐾 ; ... ;

𝑖𝑆
𝑡−𝑗+1 ; 𝑖𝐶

𝑡−𝑗+1 ; 𝑖𝑅
𝑗

; 𝑖𝑂
𝑗
] only. The self-attention module implicitly forms associations between state-reward, state-user,

segment-color and other pairs over the entire context length. Our model thus learns long-range dependencies and
meaningful patterns of color choices that achieve high reward. We train the model with teacher forcing [115] to predict
the current user, current color, and future returns-to-go as follows:

𝑢𝑡 ∼ 𝑃
(
𝑢𝑡
��𝑅𝑡 ,O𝑡 , 𝜏<𝑡

)
= softmax

(
𝑊𝑈
𝑝𝑟𝑒𝑑

𝑧𝑂𝑡

)
𝑊𝑈
𝑝𝑟𝑒𝑑

∈ R2×𝐷 (11)

𝑐𝑡 ∼ 𝑃
(
𝑐𝑡
��𝑅𝑡 ,O𝑡 ,U𝑢𝑡 ,S𝑠𝑡 , 𝜏<𝑡

)
= softmax

(
𝑊𝐶
𝑝𝑟𝑒𝑑

𝑧𝑆𝑡

)
𝑊𝐶
𝑝𝑟𝑒𝑑

∈ R56×𝐷 (12)

¯̂
𝑅𝑡+1 =𝑊 𝑅

𝑝𝑟𝑒𝑑
𝑧𝐶𝑡 + 𝑏𝑅

𝑝𝑟𝑒𝑑
𝑊 𝑅
𝑝𝑟𝑒𝑑

∈ R1×𝐷 , 𝑏𝑅
𝑝𝑟𝑒𝑑

∈ R (13)

where we use 𝜏<𝑡 as a shorthand for previous 5 (𝐾 − 1) tokens in the considered trajectory. The current user 𝑢𝑡 is
predicted using the output embedding of current canvas state 𝑧𝑂𝑡 and binary cross-entropy loss is used to train the
model. Similarly, the current color 𝑐𝑡 is predicted using the output embedding of current segment 𝑧𝑆𝑡 and multiclass
cross-entropy loss is used to train the model. Finally, the future returns-to-go value ¯̂

𝑅𝑡+1 is predicted using a linear layer
on the output embedding of the current color 𝑧𝐶𝑡 and mean-squared loss is used to train the model. We do not predict
the current segment because of its high-dimensionality and obtrusiveness [G4]. Moreover, we do not consider shape
features of segments beyond its centroid and area leading to difficulties in generalization across all line-art segments.
Mathematically, the loss 𝐿𝑡 is given by,

𝐿𝑡 = 𝑝
𝑎𝑐𝑐𝑒𝑝𝑡
𝑡 ×

(
BCELoss (𝑢𝑡 , 𝑢𝑡 ) + CELoss (𝑐𝑡 , 𝑐𝑡 ) +

��� ¯̂𝑅𝑡+1 − 𝑅𝑡+1
���2
2

)
(14)

where we multiply 𝑝𝑎𝑐𝑐𝑒𝑝𝑡𝑡 as an importance weight of the current turn 𝑡 . We average 𝐿𝑡 over the context length and
compute gradient updates to learn parameters of our model that minimize the overall loss.
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5.2 System Configuration at Inference Time: Updating UI with Interventions

As a result of above training, we can specify the desired performance via returns-to-go value and provide an uncolored
line-art canvas state to initiate autoregressive generation. However, we cannot directly embed this model into our
interface and color the segments following the generated sequence because it denies users the agency to express
their creativity. To meet our design goal [G4] of non-obtrusiveness and ensure user agency is intact, we present the
predictions of our model via five UI elements that help users in making optimal choices. For the following interventions,
we assume that (𝑡 − 1) turns are completed at inference time and the recorded trajectory is given by 𝜏<𝑡 .

Peek Button [G1, G3]. When clicked by U1, a snapshot image of the current canvas state is displayed with the
uncolored segments filled by colors that U2 might prefer. Formally, for each uncolored segment 𝑖 , we pick the color 𝑐𝑡
such that 𝑐𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃

(
𝑐𝑡 = 𝑐

��𝑅𝑡 ,O𝑡 ,U2,S𝑖 , 𝜏<𝑡
)
by passing U2 and S𝑖 at turn 𝑡 to our system and fill the segment

𝑖 with 𝑐𝑡 . This intervention can be used by U1 to imagine the final output that U2 intends to have, thereby helping in
forming a converged perspective.

Color Prediction Button [G3]. When clicked by U1, a snapshot image of the canvas is displayed with the uncolored
segments filled by colors that U1 might prefer. The functionality is similar to the previous button, expect here we pick
the color 𝑐𝑡 such that 𝑐𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃

(
𝑐𝑡 = 𝑐

��𝑅𝑡 ,O𝑡 ,U1,S𝑖 , 𝜏<𝑡
)
by passingU1 and S𝑖 for each uncolored segment 𝑖 .

This intervention provides great value to novice users who face difficulty in picking optimal preference-aligned colors
to fill the canvas. Note that the snapshot image displayed here is equivalent to the image displayed when U2 clicks on
the peek button at her end.

Floating Emoticons [G1, G2]: A happy-face emoticon is displayed when the user who colors at turn 𝑡 and the
optimal user predicted to color by the model𝑢𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝑃

(
𝑢𝑡 = 𝑢

��𝑅𝑡 ,O𝑡 , 𝜏<𝑡

)
are the same. Contrarily, an angry-face

emoticon is displayed when the user who colors is not the same as model’s optimal user. This intervention facilitates
a weak communication link between the users and nudges them to take actions that are in favour of each other’s
preferences. It also acts as a feedback mechanism to the other users; a user seeing too many angry emoticons is probably
forcing her palette onto the other user. The emoticons are ephemeral and float for a few seconds before disappearing.

Collaboration Score Button [G2]: When clicked by any user, a progress bar is displayed that indicates the collabo-
rative strength of both users in achieving a coherent line-art colorization. It is computed using the formula

(
4𝑇 − ¯̂

𝑅𝑡

)
where ¯̂

𝑅𝑡 =𝑊
𝑅
𝑝𝑟𝑒𝑑

𝑧𝐶
𝑡−1 + 𝑏

𝑅
𝑝𝑟𝑒𝑑

is the predicted returns-to-go value at the previous turn (𝑡 − 1). Note that 4𝑇 is the
maximum attainable total reward value in our simulator at the end of any trajectory7. This intervention provides
valuable feedback to both users; a low score implies that ¯̂

𝑅𝑡 is high and more rewards can be gained by taking optimal
actions in future turns.

Figure 1 shows these additions to the user interface. Users can click on “Toggle Model” button to display the various
intervention elements listed above. . Note that the snapshot image of Color Prediction when chosen by user S1 is the
same as the snapshot of Peek (2) when chosen by user S2; this connection is annotated with a dashed line. From the Peek
output (2, 3) on both screens, we can see that our model is able to color well and capture common-sense reasoning such
as legs having the same green color, tail taking a darker green shade, etc. The model also captures the user inspirations
well – the color for elephant’s body in S2’s Peek output (2) (that is, S1’s color predictions) is a very light shade of green
that is the closest to S1’s preferred colors. Based on interviews in the formative study, we add some more UI elements
such as inspiration/emotion/joint palettes (5) to make the task easy to handle.
7Reward 𝑅𝑡 is a weighted sum (where all weights are non-negative and less than or equal to 1) of 𝑅𝑝𝑟𝑒𝑓 , 𝑅𝑑𝑜𝑚 , 𝑅𝑐𝑠 , 𝑅ℎ𝑎𝑟 , and 𝑅𝑑𝑖𝑣 . Each reward
component lies in the range [0, 1] except 𝑅𝑑𝑜𝑚 which is in the range [−1, 0]. Thus, the maximum value attained by 𝑅𝑡 at any turn is 4, and the total
reward at the end of a trajectory is𝑇 × 4
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6 EXPERIMENTAL RESULTS

Despite the success of Deep RL systems in achieving high accuracies and rewards on various tasks, there are several
works that show that these systems fail in deployment due to diversity in real-world scenarios [35, 68]. This shows
that average reward or accuracy are not sufficient metrics to gauge the strength of RL systems. Since we situate our
CollabColor system in human-human interactions, it accentuates the difficulty in evaluation due to subjectivity in
human actions [60, 107]. In particular, Leibo et al. [60] posit that concepts such as trust, generosity, and deception are
vital to evaluate AI for collaboration. User studies are also not often representative of the performance at deployment
time due to a long tail of unusual and adversarial human actions [56]. Given that our task is creative, correct behaviours
are ambiguous and arriving at reasonable behaviour is tough even for humans. Nevertheless, we design a suite of
evaluation strategies to stress test our system based on real-world scenarios. We also derive inspiration from evaluation
techniques used in psychological and cognitive sciences to assess team functioning [79, 116] and adapt them to our
three-agent setup. Our evaluation schemes are also motivated by the increasing trend in ML communities to move
beyond easily calculated metrics and consider diverse real-world scenarios to capture performance [92, 126].

6.1 Setup

We prepare the canvas and users as shown in Figure 7 with uncolored line-arts and user emotion pairs, and use the
trained CollabColor model to autoregressively generate action trajectories with an initial returns-to-go value 𝑅1 = 4𝑇 ,
context length of 10 and 𝑇 set to 100. Effectively, we replace the rule-based pickers with our model that has learned to
promote and generate conflict-resolving actions. Since our model does not predict segments, we consider segments
following segment picker mechanisms (Appendix E) for simplicity. Additionally, we also a train our system with a
BiLSTM architecture [66] instead of transformer architecture as an ablation and generate trajectories as described above.
The generated trajectories are equivalent to a three-player system in which the two users accept all the suggestions of
the third player (our facilitator system). We could consider such users as novices in co-creating who are looking for
assistance from our system and denote their acceptance by a quantity 𝑝𝑎𝑐𝑐

𝑖
= 1.0 for each user 𝑖 , to replace 𝑝𝑎𝑐𝑐𝑒𝑝𝑡𝑡 in

Section 4.2. Note that these trajectories are only a proxy for deployment scenario if which two real users interact with
our system. We show some qualitative examples of our trajectories in Appendix D.

Stress Testing.We consider stress testing by designing adversarial user agents to interact with our system. Note
that an adversary can be very powerful in our task, leading to very low reward easily. For instance, an adversary could
always color the same segment with a fixed color regardless of what our system suggests (𝑝𝑎𝑐𝑐

𝑖
= 0), leading to a very

low reward. We thus consider three adversarial types for User-1 keeping User-2 at full acceptance (𝑝𝑎𝑐𝑐2 = 1.0): (i)
Novice with lower acceptance 𝑝𝑎𝑐𝑐1 = 0.8 who accepts system assistance for most turns, but picks random colors and
segments for other turns; (ii) Stationary user with a very low acceptance of 𝑝𝑎𝑐𝑐1 = 0.2 who always chooses the same
segment regardless of the turn; (iii) Random user with a very low acceptance of 𝑝𝑎𝑐𝑐1 = 0.2 who chooses colors and
segments at random for most turns. Based on these user combinations, we generate several trajectories with 𝑅1 = 4𝑇 as
described earlier. We experimented with lower 𝑝𝑎𝑐𝑐1 values but found the trajectories to be severely degenerate, with
the same action predictions repeating across turns and terminating prematurely.

Recurrence Quantification Analysis (RQA). Recurrence plots [73, 113] have been previously used in measuring
social and collaborative problem solving systems [25, 116]. RQA involves the construction of a 2-dimensional recurrence
plot (RP) that visualizes recurrence of states in a dynamic system. When there are two or more agents interacting,
joint RPs are constructed by taking a hadamard product of RP of each agent. Motivated by the literature on Human
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Autonomy Teaming (HAT) [74, 85], we construct a joint RP from the trajectories generated by CollabColor. Formally,
let 𝑅1, 𝑅2 ∈ R𝑇×𝑇 be the RPs of User-1 and User-2 respectively, then for each (𝑡𝑖𝑎, 𝑡𝑖𝑏 ) ∈ {1, 2, · · ·𝑇 } × {1, 2, · · · ,𝑇 } and
𝑖 ∈ 1, 2,

𝑅𝑖 =


1 if 𝐷 (𝑡𝑖𝑎, 𝑡𝑖𝑏 ) < 𝜖

0 otherwise
(15)

where 𝐷 (𝑡𝑖𝑎, 𝑡𝑖𝑏 ) ∈ R is a distance function that maps the orientation of User-𝑢 at turn 𝑡𝑖 to a continuous value. Joint
RP is therefore given by 𝑅1 ⊙ 𝑅2. As evident from the equations, the diagonal entries of both RPs and JRP are set to 1.
Determinism is a statistic computed from JRP that measures the extent to which teams follow stable, rigid patterns
of interactive behaviour. It is calculated as the proportion of recurrent points that lie on the diagonal on JRP. The
inverse of determinism, termed flexibility [79], captures how fluid and receptive the team members are to state changes.
Intuitively, a high value of flexibility indicates a system wherein the players are not very rigid; they respond and vary
their orientations based on the actions of other players.

For RP computation, we extract triplets (𝑢𝑡 , 𝑠𝑡 , 𝑐𝑡 ) from generated trajectories and prepare two single agent trajectories
{
(
𝑢1, 𝑠1

𝑡 , 𝑐
1
𝑡

)
}𝑇
𝑡=1 and {

(
𝑢1, 𝑠2

𝑡 , 𝑐
2
𝑡

)
}𝑇
𝑡=1 where (𝑠

𝑖
𝑡 , 𝑐

𝑖
𝑡 ) = (𝑠𝑡 , 𝑐𝑡 ) if user 𝑢𝑖 has taken the action at turn 𝑡 , else recorded

as (𝑠𝑡 , 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃
(
𝑐𝑡 = 𝑐

��𝑅𝑡 ,O𝑡 ,U−𝑖 ,S𝑠𝑡 , 𝜏<𝑡
)
), that is, with the color𝑢−𝑖 would pick (computed bymodel color predictor

described in Section 5.2) to color the segment 𝑠𝑡 picked by 𝑢𝑖 . Note that the preparation is similar to Section 4.1, except
we replace the noop action with color prediction action when the user has not taken any move because this captures
the behavioural orientation of that user. Moreover, had we recorded the color as noop, then the RPs of both users would
always match due to the recurrence of noops whenever the users do not take actions. We consider a simple distance
function 𝐷 (.) that takes in the orientations (𝑠𝑖 𝑡𝑎 , 𝑐𝑖 𝑡𝑎 ) and (𝑠𝑖 𝑡𝑏 , 𝑐𝑖 𝑡𝑏 ) of User-𝑖 at two turns 𝑡𝑎, 𝑡𝑏 and aggregates the 𝐿2

distance of segment centroids of (𝑠𝑖 𝑡𝑎 , 𝑠𝑖 𝑡𝑏 ) with LAB space distance of colors (𝑐𝑖 𝑡𝑎 , 𝑐𝑖 𝑡𝑏 ). We use the JRPs to analyze the
variations of rewards with flexibility in our experiments.

6.2 Results

6.2.1 Stress Test Analysis. We average each of the five rewards across the entire trajectory and display values in Table
2 for all user types and model variants. Additionally, we display the average reward values obtained from the simulator.
From the table, we can see that CollabColor wtih GPT architecture achieves higher average reward in most parts, except
for diversity. This shows the strength of our GPT model in learning meaningful patterns from the simulated sequences
and implicitly memorizing the useful patterns so that the model-generated trajectories achieve reward (signalled by a
maximum returns-to-go value of 4𝑇 ). BiLSTM model achieves higher rewards than the simulator, but not as much as
our model with GPT variant. This verifies the value of masked attention and longer context lengths.

Across the user types, we see that average rewards noticeably decrease as users take more random actions. Interest-
ingly, our model with GPT maintains a decent reward value as compared to the model with BiLSTM even for stationary
and random user types. This shows that our system is robust to adversarial agents.

Across the parts of rewards, the maximum gains are obtained in 𝑅𝑐𝑠 . This shows that our model is able to assimilate
common-sense colorizations across the entire train data, showing the strength of transferability of supervised learning.
𝑅ℎ𝑎𝑟 is also high for our model; showing that the final colorizations produced are harmonious and pleasing to the eye
of the viewer. However, there is a noticeable drop in 𝑅𝑑𝑖𝑣 ; this could be due to degenerate color actions generated in
our model trajectories, especially in the beginning of the sequence. Our observation matches with that of Barnes et al.’s
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Table 2. Quantitative Results of Stress Testing our CollabColor system and its BiLSTM variant with four user types. (↑) indicates
that higher values are better. Values shown are averaged over the entire trajectory. Note that for all the cases, User-2 type is fixed to
Novice and 𝑝𝑎𝑐𝑐2 = 1.0. 𝑅𝑡𝑜𝑡 is the sum of the five reward values. For reference, we also display the rewards obtained by simulated
trajectories used to train CollabColor. Additionally, we also note that the maximum value of average total reward across entire
sequence is 4(= 4𝑇 /𝑇 )

User-1 Type CollabColor
Variant

𝑅𝑝𝑟𝑒 𝑓

(↑)
𝑅𝑑𝑜𝑚

(↑)
𝑅𝑐𝑠

(↑)
𝑅ℎ𝑎𝑟

(↑)
𝑅𝑑𝑖𝑣

(↑)
𝑅𝑡𝑜𝑡

(↑)
Simulator 0.47 -0.48 0.16 0.46 0.65 0.98

Novice
𝑝𝑎𝑐𝑐1 = 1.0

With BiLSTM
With GPT (Ours)

0.54
0.73

-0.37
-0.14

0.19
0.45

0.49
0.77

0.44
0.62

1.29
2.43

Novice
𝑝𝑎𝑐𝑐1 = 0.8

With BiLSTM
With GPT (Ours)

0.52
0.72

-0.51
-0.26

0.19
0.44

0.42
0.74

0.46
0.62

1.08
2.26

Stationary Segment
𝑝𝑎𝑐𝑐1 = 0.2

With BiLSTM
With GPT (Ours)

0.33
0.56

-0.60
-0.51

0.12
0.27

0.36
0.37

0.32
0.48

0.53
1.17

Random
𝑝𝑎𝑐𝑐1 = 0.2

With BiLSTM
With GPT (Ours)

0.17
0.29

-0.64
-0.52

0.10
0.21

0.24
0.39

0.69
0.66

0.56
1.03

Table 3. Results of clustering the trajectories generated by CollabColor for the case of 𝑝𝑎𝑐𝑐1 = 1, 𝑝𝑎𝑐𝑐2 = 1. We cluster based on the 16
sampled user-user emotion pairs, and display the reward obtained by averaging over all trajectories in each cluster. The (∗) symbol
next to an emotion indicates that it is more dominant for that cluster. Refer to Section 4.2 for a detailed description of how users and
their emotions/dominance are prepared.

User 1 (↓) & User 2 (→)
Preferences Happy Scary Gloomy Peaceful

Happy∗
Scary∗
Gloomy∗
Peaceful∗

3.44
1.88
1.62
2.95

1.92
3.02
2.45
1.72

1.77
2.45
3.21
2.18

2.91
1.68
2.24
3.42

[13] finding that without user interaction, it is difficult for models to start with sensible colorization or explore the vast
color design space.

6.2.2 Which user emotion pairs are easier to deal with? To further analyze CollabColor (with GPT), we cluster the
generated trajectories into 16 parts based on the sampled user preferences and dominance (refer Section 4.2). Table
3 shows the breakdown of average rewards across the 16 clusters. As evident from the table, our model achieves the
highest rewards when sampled user emotions are the same. This is expected as there will be fewer conflicts in the
users and colors chosen by our model, leading to a high 𝑅𝑝𝑟𝑒 𝑓 and 𝑅ℎ𝑎𝑟 . Interestingly, emotions that are closer to each
other [36] such as Happy-Peaceful pair also score high. This proves that our model is able to successfully distill the
preferences from the input sequences, and find aligned colors/emotions. Some emotion pairs such as Gloomy-Happy
score low reward, indicating that these lead to more conflicts. However, most of the cluster rewards are higher than the
total average reward of simulator, showing that our model does find and promote conflict-resolving actions even for
incompatible preference/emotion pairs. We do not find any discernible trend as the dominance varies across emotions.
Note that we denote the dominant user/emotion with a (∗) in Table 3.
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Fig. 9. Stress testing the scenario wherein User-2 does not take any actions. We consider two cases: (i) trajectories generated when
CollabColor is off (𝑝𝑎𝑐𝑐1 = 0); (ii) trajectories generated when CollabColor is on (𝑝𝑎𝑐𝑐1 = 1).

(a) (b)

Fig. 10. Part (a) shows the average variation of dominance score with turns for two trajectories: (i) Novice user trajectory generated
by CollabColor with 𝑝𝑎𝑐𝑐1 = 1, 𝑝𝑎𝑐𝑐2 = 1; (ii) trajectories extracted from mode-3 of our formative study. When trajectory lengths
are not equal to 100, we pad with the average dominance score of that trajectory to reach𝑇 = 100. Part (b) compares the coloring
conflicts such as recoloring, reversion averaged over the same trajectories in Part (a).

6.2.3 What if network connectivity is poor? We consider yet another form of stress testing in which one user does not
take any actions at all. This is representative of a real-world scenario in which a user has poor network connectivity and
her actions do not get relayed in the synchronous co-creation process. We first formulate two values 𝑅𝑝𝑟𝑒 𝑓1 and 𝑅𝑝𝑟𝑒 𝑓2 to
represent how close an image is to the sampled emotion of each user. We do so by calculating the similarity of the canvas
line-art embedding at turn 𝑡 given byO𝑡 with the average CLIP embedding of images in BAM dataset corresponding
to a particular emotion. We average the similarities to obtain two values 𝑘1 and 𝑘2 representing the alignment to
preference emotions. We then obtain 𝑅𝑝𝑟𝑒 𝑓

𝑖
as 𝑘𝑖/(𝑘1 + 𝑘2) × 𝑅𝑝𝑟𝑒 𝑓 . We plot the three values 𝑅𝑝𝑟𝑒 𝑓1 , 𝑅

𝑝𝑟𝑒 𝑓

2 , 𝑅𝑝𝑟𝑒 𝑓 for
two cases: when model is off, corresponding to the trajectories wherein user-2 takes no actions and user-1 takes actions
𝑝𝑎𝑐𝑐 = 0, and when model is on, corresponding to the trajectories wherein user-2 again takes no actions but user-1
takes actions 𝑝𝑎𝑐𝑐 = 1.

When CollabColor is off, 𝑅𝑝𝑟𝑒 𝑓 is entirely governed by user-1’s preferences, with 𝑅𝑝𝑟𝑒 𝑓1 curve almost coinciding with
𝑅𝑝𝑟𝑒 𝑓 . User-2’s preferences are seldom incorporated, leading to complete lack of co-creatino. When CollabColor is on,
𝑅
𝑝𝑟𝑒 𝑓

2 increases, indicating that the actions suggested by the model try to find a balance between the two preferences,
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leading user-1 to find a shared perspective. This is possible because CollabColor is trained to arrive at a coherent and
harmonious colorization that incorporates both users’ preferences. Thus, even when the second user loses connectivity,
our CollabColor system ensures that her presence is not entirely lost in the final line-art colorization. However, we note
the limitation that the preferences are unevenly incorporated.

6.2.4 Reduction in Coloring Conflicts. We now compare trajectories generated by CollabColor for Novice user type
with 𝑝𝑎𝑐𝑐

𝑖
= 1.0 with the user-user data obtained in mode-3 (with inspiration images) of formative study on the metrics

of dominance scores and coloring action conflicts defined in Section 3.3. This comparison allows us to see how well our
sequences improve upon a real world user study. Note that when our model is deployed, our sequences are not applied
on the line-art, but only suggested to the user if model is toggled (non-obtrusive). Thus, the data we present here with
𝑝𝑎𝑐𝑐1 = 1 is an upper bound on the expected performance in deployment.

We first plot the variation of dominance score of the dominant user (can be user-1 or user-2) across turns. From
Figure 10(a), we can see that CollabColor trajectories have lesser dominance than the trajectories collected in user study.
This is also reflected in a higher dominance score in Table 2. Furthermore, our trajectories also allow for a very feeble
negative dominance score towards the middle of the entire turn-taking process. This shows that our model also gives
the less-dominant user a chance to take extra turns. Note that we do not explicitly train the model to produce such
a scenario. Our model is able to learn the connections between the 𝑅𝑑𝑜𝑚 signals and the simulated user sequence in
input to stitch useful user sequences together for inference-time generation. Note that the mode-3 curves becoming
constant towards the end of turns could be an artifact of the padding scheme ( appending average dominance values)
we employed to make the length of sequences 𝑇 = 100. Next, we plot the coloring action conflicts in Figure 10(b). As
evident from the figure, there are fewer recoloring and reversion conflicts in generated trajectories. This again shows
the strength of our model in learning to reduce conflicts and promoting conflict resolutions with only implicit signals
from the rewards.

6.2.5 Does Flexibility lead to increase in rewards? We compute the flexibility using Joint Recurrence Plots (JRPs) for
three cases as shown in Figure 11, and display a scatter plot of flexbilities of trajectories with the total reward obtained.
The three cases we consider are (i) user simulator trajectory; (ii) Novice User trajectory generated by CollabColor with
𝑝𝑎𝑐𝑐1 = 1, 𝑝𝑎𝑐𝑐2 = 1; (iii) Stationary User trajectory 𝑝𝑎𝑐𝑐1 = 0, 𝑝𝑎𝑐𝑐2 = 1 with generated by CollabColor, wherein both the
user chooses the same segment and same color for all turns.

From Figure 11, we see that the simulator has low rewards (also in Table 2) and comparatively low flexibility. Novice
user trajectories have higher reward and high flexibility, showing that the model facilitates and promotes actions that
lead to less rigidity and more cooperation. Despite the overall flexibility of the simulator being low, the fact that the
model has achieved higher flexibility indicates that it is able to distill parts of the simulated trajectories with higher
flexibility and stitch them together implicitly during learning and inference. Although there is no evidence of exact
trend between flexibility and total reward, we find that the trend for novice case amounts to an inverted ’U’ curve, that
is, the reward first increases with more flexibility, and then decreases for very high flexibility. The case of stationary
user is interesting. Stationary user takes the same orientation throughout the trajectory, leading to recurrence at every
turn. Thus, entries of stationary user’s RP 𝑅1 are set to 1 as seen in Figure 11(c). Flexibility of JRP is then equal to the
flexibility of the RP 𝑅28. As evident from the scatter plot in Figure 11, stationary user enjoys a wide range of flexibility
albeit with lower rewards. This is expected due to adversarial actions of User-1, but the high flexibility it offers is

8JRP = 𝑅1 ⊙ 𝑅2 where all entires of 𝑅1 are 1; so JRP = 𝑅2
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(c) Stationary; Flexibility = 2.19

(b) Novice; Flexibility = 1.86

(a) Simulator; Flexibility = 1.32

Fig. 11. RecurrenceQuantification Analysis of CollabColor system. In the left part of the figure, we display the RPs of User-1 and
User-2, namely 𝑅1 (left) and 𝑅2 (middle) respectively, and their joint RP given by 𝑅1 ⊙ 𝑅2 (right). In the right part of the figure,
we display a scatter plot of flexibility versus average total reward. We consider trajectories from three cases: (i) Trajectories from
Simulator (a); (ii) Trajectories from CollabColor for Novice user with 𝑝𝑎𝑐𝑐1 = 1, 𝑝𝑎𝑐𝑐2 = 1 (b); (iii) Trajectories from CollabColor for
Stationary user who picks the same color and same segment always with 𝑝𝑎𝑐𝑐1 = 0, 𝑝𝑎𝑐𝑐2 = 1.

counter-intuitive. A user taking the same actions always actually is the most rigid with no flexibility or consideration
of other user’s actions. This is a limitation of the RQA method when used in our system’s context. Challenges of such
coordination measures are discussed at length in Wiltshire et al.’s work [117]. We note the limitation of RQA in our
context and delegate further analysis and more robust measures of coordination to future work.

7 HUMAN EVALUATION

Human perception of the output artwork of a creative task is vital in creative design cycle [71]. Several previous works
[11, 124, 126] have pointed out the limitations of automated metrics in measuring subjective opinions of creative outputs
such as that of image generation, artificial chatbots, etc. Easily calculable metrics such as PSNR, SSIM do not reflect
the true quality of colorization, as discussed in detail in Zhang et al.’s work [124]. We conduct an extensive human
evaluation to measure the performance of final line-art colorizations created by CollabColor system, assuming 𝑝𝑎𝑐𝑐

𝑖
= 1

for each User-𝑖 . As discussed earlier, this serves only as an upper bound of the accuracy obtained when our system is
deployed in real-world.

7.1 Setup

We use Amazon Mechanical Turk for crowdsourcing annotations for human evaluation through two surveys that
capture subjective opinions such as value, novelty, surprise of colorizations generated by CollabColor. We set the
annotator prerequisites as "MTurk Masters" located in the United States having an approval rate more than 95% and at
least 30 annotations approved in the past. To arrive at optimal budgeting of our surveys, we conduct several trial runs
and estimate the mean time taken to complete them. For our second experiment which displays videos to annotators,
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we ensure that the video length is less than one minute by sampling for appropriate number of turns. This is to ensure
that our annotators are not put under severe cognitive load. We pay our annotators at 12 dollars per hour.

7.1.1 Experiment-1: Estimate the creativity of final colorization. We build on Parikh et al.’s work [86] to choose two axes
(novelty, value) to measure the subjective notion of creativity. In our trial runs, we displayed the uncolored line-art and
model’s colorizations. However, we received feedback from respondents that they needed a reference to ascertain the
novelty or value. We thus displayed the ground-truth colorization too in the main survey as a reference. A sample of
survey questions are displayed in Appendix F. Since novelty and value are abstract concepts, we break them down
into two or more components following See et al. [97]. We consider 50 (uncolored lineart, GT colorization, model
colorization) triplets for this survey, with 10 annotations per triplets.

7.1.2 Experiment-2: How would you assist in the coloring process? We create videos at 0.8 frames per second for
turn-taking generated by CollabColor by sampling the number of turns from Unif(30, 50). We do not show all the 100
turns since it would lead to very long videos. Note that each frame corresponds to the canvas state after each turn, as
shown in the Experiment-2 questionnaire box in Appendix G. Respondents are asked to make certain corrections and
assistance at the last frame of the video. We compare their responses with what the model decides at the last frame
turn. Furthermore, we ask a set of exploratory questions to understand whether a human facilitator can contribute well
for our co-creation task.

7.2 Results

7.2.1 CollabColor achieves significant gains in novelty while adding comparable value. Average across all responses
in Experiment-1 is reported in Table 4. A value of 50% in "More Purchasable?" column for Image-A refers to 50%
respondents feel ground-truth colorization scores more than or equal to CollabColor colorization in purchasability. To
obtain the gain in value of a colorization, we average the gains in sensibility and purchasability. The overall gain in
novelty is reported as the average of gains in surprising-ness and likeliness. Table 4 corroborates the evidence in Parikh
and Zitnick [86] that co-creativity leads to more novelty. The gains in novelty for our system are high, but the value
offered is slightly lower than the ground-truth coloring. Despite a lower value, the average of gains in value and novelty
(corresponding to a vague notion of creativity) is higher for our system. Furthermore, we ask the respondents to choose
an emotion for Image-B and compare with the dominant emotion in the trajectory for Image-B. The emotions match
74% of the time, indicating that CollabColor perceptually meets the requirements of emotion preferences of users. Thus,
CollabColor not only leads to more creativity, but is also a Game with a Purpose (GWAP) [110] unlike Casual Creators.

Qualitatively from the feedback, respondents largely found our survey interesting and fun to complete. One respondent
stated, "It’s like A is traditional and B is modern!"; another stated, "Though B is not colored as I feel it should be, if gives a

more happy feeling". We received some negative feedback too; one respondent found a line-art colored by CollabColor
to contain the same color for all segments and did not find it appealing. This could be due to degeneracy in generated
trajectories. Although such colorizations are rare, we intend to tackle this limitation in future work.

7.2.2 Respondents find facilitation hard. We compute the alignment in Color Predictions at the end of video by
CollabColor and respondents by taking a LAB space distance of the colors chosen. Similarly, we compute the alignment
for Collaboration Score (defined in Section 5.2) by considering the responses to how "conflicting" respondents find the
video. We find that the predictions of CollabColor model and humans match approx. 55%, indicating that the model
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Table 4. Results of Experiment-1 in Human Evaluation.

Colorization
Type

More
Sensible?

(↑)

More
Purchasable?

(↑)

More
Value?
(↑)

More
Surprising?

(↑)

Less Likely
to color?

(↑)

More
Novelty

(↑)
Ground-truth
(Image A) 53% 50% 51.5% 42% 35% 38.5%

CollabColor
(Image B) 45% 47% 46% 53% 65% 59%

Fig. 12. Results of Experiment-2 in Human Evaluation

can somewhat replace a human facilitator. Although the alignment is not too high, exploratory queries suggest that
respondents (61%) did not find the task easy to handle, as shown in Figure 12. 55% of the respondents felt that a software
is more suitable to facilitate than a human. These responses encourage the idea of building creative support tools
[50, 71] for co-creation, wherein observing and catering to conflicts of two or more creators can get significantly hard
for human facilitators.

8 DISCUSSION, LIMITATIONS, AND FUTUREWORK

Our work can be extended by sampling more than two users (discussed in Section 4.2) with a myriad preference
traits beyond emotions. Mladenov et al. [76] provide a framework of simulation with evolving preference traits in the
context of recommender systems, which can be used to extend our work. We believe that CollabColor is an important
step forward in designing facilitator systems that promote collaboration. We envision systems that can not only aid
in creativity, but also in other social and professional domains to build trust, shared intentionally [103], and bring
populations together to solve pressing global challenges [27]. We provide further discussion of using CollabColor to
foster data collection and study co-creativity akin to Casual Creators [24] or GWAP systems [110] in Appendix H.

We do acknowledge some limitations of this work. Our simulation assumes complete observability of user preferences,
which is often not desirable by users in real-world scenarios. We also do not consider the consequences of poor
synchronization and undo-ing of actions, both of which are vital in building real-time collaborative data structures such
as CRDTs [55, 98]. Conflicts in initial stages of collaboration can often lead to significant improvements in final product
[95]. We do not explicitly encode this in our reward signals, however our human evaluation results in Figure 12 suggest
that conflicts indeed increase and then decrease in CollabColor trajectories. We intend to investigate such evolution of
conflicts in future work. In terms of modelling, we do not subdivide and allocate creative tasks to users [118] due to
the ambiguity in creative choices. Moreover, our model predicts optimal choices for next user and next color, but does
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not predict for next segment. We found segment prediction hard owing to the diversity in shapes, sizes, and counts of
segments in various line-art SVGs. One way to improve segment prediction is by obtaining rich vector representations
of shapes of segments using recent innovations such as DeepSVG [17, 91], which can aid in generalization across
segments in our data.

9 SOCIETAL IMPACT

Cooperative Intelligence is a desirable feature of all societies, however it can quickly reduce to coercive competition
if not handled well by social planners [27]. Our work can be considered as computing used for formalism, wherein
we explicitly define the subjective notions of conflicts and resolving actions/rewards. As discussed in Computing for
Social Change [10], formalism can easily be gamed to favor one set of population over the other. We take special care in
CollabColor to ensure that both users’ preferences are incorporated and there is no selective favoring of any one user.
This can be corroborated by our experimental results in Figure 10, wherein the dominance of one user reduces over time
and a window is provided for other user to incorporate her preferences. Figure 9 shows that even if one user has poor
network connectivity, our system incorporates her preferences in the final colorization. Furthermore, we consider user
agency paramount to our interface design and carefully investigate the consequences of obtrusiveness. Our interface
thus encodes rarely considered values in ML research [16] such as user agency, and focuses on UI interventions that
respect user’s creativity [71]. We point the reader to survey on Cooperative AI [27] for extensive discussion on societal
impact of facilitators in cooperative tasks.

Evans et al. [31] show that rewards in RL systems can be tampered to polarize and alter the innate preferences of
users. While we do not analyze our rewards in context of tampering, we provide a detailed description of each reward in
Section 4.2 and request readers to carefully consider the consequences when adapting our reward functions. We further
note that our rewards for conflicts are meant only for the co-creation task of line-art colorization and will probably not
generalize to any other societal conflicts. We delegate further investigation of our rewards in other societal contexts
to future work. In particular, we intend to investigate the explainability of action predictions by CollabColor using
techniques such as attribution [82] for RL Vision as discussed in Hilton et al.’s work [44]. This would help us interpret
the impact of canvas states and actions in context of final reward obtained, thereby enabling principled fine-tuning of
reward function choices.

10 CONCLUSION

We introduce CollabColor, a reinforcement learning-based creative support system that eases the collaboration of two
users working on a co-creation task of line-art colorization. We present a transformer-based architecture that processes
the sequence of user actions and canvas states to contextually memorize and suggest conflict-resolving actions via
non-obtrusive UI interventions. We identify and define key conflicts that occur in the considered co-creation task
using a formative study. We further use insights from the study to design data simulator and reward signals that aid
in preparing offline trajectories for training the transformer. Our novel simulator is imbued with techniques such as
Behavior Cloning and Theory of Mind to simulate realistic trajectories that capture human biases.

Our evaluation consisting of stress testing with adversarial users and recurrence quantification analysis (RQA)
demonstrate the effectiveness of CollabColor in incorporating the preferences of both users and reducing conflicts
between them. Our human studies and exploratory evaluation show that the colorizations produced by CollabColor
provide significant gains in novelty while maintaining a good value as compared to ground-truth colorizations. Survey
responses indicate that CollabColor’s interventions during co-creation are aligned to those of human facilitators.
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A ANECDOTAL EVIDENCE SUGGESTS OUR INTERFACE IS USEFUL

At the time of writing, we did not conduct a large-scale exploratory study of our interface with CollabColor toggled on.
From anecdotal evidence of 10 user-user pairs (novices, design researchers), we find that our system is fairly easy to
understand and use. They also felt our system eases collaboration, leading to coherent colorizations. We have included
a supplementary video in the attached zip file9, and invite readers to view this video for better understanding of our
interface in action. While our quantitative and qualitative results including stress tests and adversarial users show that
our system fares well in facilitation, we intend to pursue a large exploration of our interface in future work.

B FURTHER RELATEDWORK

B.1 Upside-down Reinforcement Learning for training on suboptimal trajectories

Our simulated trajectories are suboptimal since we neither use self-play nor collect expensive expert data. Recent results
by Kumar et al. [58] show that learning from suboptimal policies is very much possible using offline reinforcement
learning (RL) and reward-conditioned policies. Offline RL is a “data-driven” paradigm of RL that forgoes active data
collection and instead utilizes previously collected large experience data to train high-capacity scalable models that
are introduced in supervised learning (SL) literature. This enables RL practitioners to use stable and reliable super-
vised algorithms that have resulted in substantial progress in AI over the last decade and impart a “common-sense”
generalization in their systems [59]. However, offline RL methods have been shown to overfit [59] due to excessive
training on given datasets and lack of active feedback from the environment. We partially bypass these concerns since
our simulated data is created using several diverse line-arts that decreases the chances of overfitting.

Within the paradigm of offline RL, upside-down RL [96, 100] that predicts actions instead of rewards has gained
traction for its conceptually simple perspective and easy inclusion of powerful SL architectures. Contrary to policy
based RL methods that only look for actions that maximize the reward, upside-down RL is more general and learns
actions that achieve any required reward making it suitable to train on suboptimal sequences. Decision transformer [21]
and Trajectory transformer [48] are two instantiations of upside-down RL that offer a sequence modelling objective on
collected experience trajectories. Transformers [109] enable larger context length than LSTMs [45] and thereby help in
bypassing long-term credit assignment problem of RL [108].

C DATA PREPARATION FOR LINE-ART FLAT COLORIZATION

Existing colorization datasets used in works such as [23, 101, 122–124] store images pixel-wise. This storage is suitable
for tasks such as coloring a black-and-white image [123], coloring a line-art anime character based on user strokes [23]
or color style transfer [101]. However, it is not suitable for our flat colorization task which constrains pixels within a
closed segment to have the same color. One way is to store a segmentation mask for each closed segment region to bind
the pixels together, akin to various semantic segmentation datasets [26, 67]. But the images in these datasets are natural
with high frequency attributes and gradient colors, making them unsuitable for flat coloring. In addition, segmentation
mask images themselves take up extra storage. Another way to create a dataset for our task is to extract line-art and
segment flat-colored images by clustering pixels using a depth-first search approach [62, 120]. However, this method
suffers from leaky boundary issues leading to poor quality line-arts after clustering. Finally, we can generate our own
images with randomized strokes and closed paths while storing the pixel-binding information. However, these images
lack semantic meaning making it difficult for users to color.

9The demo video is titled Demo_CollabColor.mp4
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In contrast to raster images, Scalable Vector Graphics (SVG) images encode different shapes in the form of hierarchical
open/closed paths in an XML-based format [8]. Given such mathematical encoding, they can be scaled to any resolution
without aliasing. Each closed path (segment) can be provided a fill attribute that encodes the color of the segment.
Setting the fill attribute as “white” for all segments thereby gives us an uncolored line-art image. This makes SVGs
suitable for our task of flat colorization of line-arts. Current SVG datasets are small and contain open sketches [1], fonts
[69], or simple icons [17], all of which are uncolored with very few or no segments. Online SVG image sources are
either not free [4] or contain very few and large complex illustrations for UI design [7].

D QUALITATIVE EXAMPLES

Fig. 13. Qualitative examples of our system. Users with greater dominance are labelled with a (∗) symbol.

Figure 13 shows qualitative examples of trajectories generated by CollabColor for novice user type (that is, 𝑝𝑖𝑎𝑐𝑐 = 1).
Additionally, we also show the ground-truth and simulator colorization (used in training) for comparison. In Part (a),
the sampled emotions are "Scary" for User-1 and "Gloomy" for User-2 with User-1 having greater dominance. We can
see that our trajectories are able to achieve sensible patterns in the colorization unlike the simulated output. In part
(b), the dominances are same but sampled emotions are reversed. We can see that the final colorization looks more
gloomy while maintaining good patterns and incorporating both users’ preferences. Some colors that lie in both palettes
of users such as "purple" are also picked. In the trajectories, we can see that the model predicts the users and their
respective preferences well. In part (b) at 𝑡 = 100, U2 colors a part of the line-art in gray, showing that U2 is able to
understand U1’s perspective. These color predictions are shown as interventions to promote conflict resolutions. The
patterns in both colorizations show that some level of work subdivision happens within CollabColor’s trajectories,
although we have not studied its consequences in detail. We delegate it to future work.
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Part (c) shows an example of degenerate trajectories generated by CollabColor. Sometimes the first color or first
segment picked derails the entire generated trajectory, especially if the emotions are incompatible (shown quantitatively
in 3). Here, all the segments are colored gray towards 𝑡 = 50, and such degeneracy persists towards the end with the
same user U1 being predicted throughout. In fact, the simulated colorization looks better because rule-based simulators
rarely result in degenerate outputs. We intend to correct this error in future work. One way is to use better sampling
during Beam Search at the inference stage with temperature softmax to promote diversity of sampled actions.

E PICKER MECHANISMS IN SIMULATION

Fig. 14. Enlarged images of Segment Picker, Color Picker, and Reward Signals.

We display enlarged schematic diagrams of both segment and color pickers in Figure 15.
Strategic Choice: Segment Picker. The second module picks a segment 𝑠𝑡 (∈ 1 . . . |𝑆 |) to be colored by user 𝑢𝑡 by

following one of the three mechanisms described here:

• Pick deterministically from uncolored segments in decreasing order of area. Figure 14 plots the variation of areas
picked by users over time across all modes in our formative study. We observe that users pick larger segments
initially owing to their greater visibility.

• Pick a segment that the selected user 𝑢𝑡 has colored before. This incorporates our finding [F1] which states that
users tend to alter the colors of segments they have already colored. Of these colored segments, we pick the
segment that has the highest value as computed by 𝐵𝐶𝑆→𝑠 (from human policy 𝜋𝐻 ).

• Pick a segment that the other user has colored before. This again caters to our finding of cross-recoloring [F1].
We use 𝐵𝐶𝑂→𝑠 to pick the highest valued segment among those colored by the other user.
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Fig. 15. Variation of Areas picked by users over time in all three modes of our formative study. This helps us in designing a mechanism
for Segment Picker.

We compute the probabilities of these mechanisms from the frequencies of their occurrence in mode 3 (with inspiration
images) and sample a mechanism from Multinoulli distribution. The representation of a segment 𝑖 (S𝑖 ) is a ( |𝑆 | + 3)-
dimensional vector consisting of the concatenation of one-hot vector of the segment (𝑣𝑖 (𝑠) ), area of the segment, and
centroids of the segment [2], where |𝑆 | is the number of segments in the chosen line-art.

Motion Choice: Color Picker. The third module picks a color 𝑐𝑡 (∈ 1 . . . 56) given the user 𝑢𝑡 and segment 𝑠𝑡 by
following one of these three mechanisms with equal probability. As explained earlier, each color 𝑖 is represented by a
56-dimensional one-hot vector C𝑖 .

• Pick deterministically the color of segment 𝑠𝑡 from GT image. This reflects the common-sense ability of users
to visualize the final output of a partially colored line-art. For instance, the background segment color in an
uncolored line-art of fish is likely imagined to be blue by most users. This blue color can be readily picked by
“peeking” into the GT image [43, 124] which is also likely to contain a blue background.

• Pick a color from 𝑃𝑈𝑢𝑡 with the closest LAB space distance to GT color. This is like the previous mechanism; except
we stress more on user color preferences based on emotions (mood-board). We compute the widely used scaled
Euclidean distance in LAB color space [5] to measure closeness of colors in 𝑃𝑈𝑢𝑡 to GT color.

• Pick the highest-valued color by human policy 𝜋𝐻 . This caters to the model 𝐵𝐶 (𝑂,𝑠)→𝑐 that has learned to color
from the past behavior of humans who have colored similar line-arts in the formative study.

Having obtained the action triplet (𝑢𝑡 , 𝑠𝑡 , 𝑐𝑡 ), we update the line-art by coloring 𝑠𝑡 with 𝑐𝑡 and recompute the CLIP
representation of canvas state asO𝑡+1. The turn-taking process terminates when 𝑡 = 100.
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F HUMAN EVALUATION EXPERIMENT-1 QUESTIONNAIRE

Experiment-1: We display three images to each respondent: an uncolored line-art, its ground-truth
colorization (Image A), and colorization by CollabColor (Image B).

[Sanity Check] Which category does the line-art belong to?
• Animal • Human • Scenery • None of the Above

[Sensible] Which of the two colorizations makes more sense?
• Image A • Image B • Both make perfect sense • Neither makes any sense

[Value] Suppose you are asked to purchase one of the two colorizations at an art exhibi-
tion. Which one would you prefer? • Image A • Image B • I’d take both! • Neither!

[Surprising] Which of the two colorizations is more surprising to you?
• Image A • Image B • Both are surprising • Neither

[Preference Alignment] Images can make us feel various emotions. What do you think is
the emotion of coloring B? • Happy • Scary • Gloomy • Peaceful

[Feedback] Please provide a feedback on this survey. An empty textbox is provided.
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G HUMAN EVALUATION EXPERIMENT-2 QUESTIONNAIRE

Experiment-2: We display a video of colorization of line-art by CollabColor, along with the users and their
emotions at each turn.

[Sanity Check] Which category does the line-art belong to?
• Animal • Human • Scenery • None of the Above

[Collaboration Score] Do you think the coloring was conflicting? If you think there was
no planning in the coloring video shown, and it seemed random taking many directions of
coloring, it is conflicting • Not at all • A little • Somewhat • Very Conflicting!

[Preference Alignment] Images can make us feel various emotions. What do you think is
the emotion of coloring process? • Happy • Scary • Gloomy • Peaceful

[Color Prediction] If you could choose colors and apply on the frame at the end of the
coloring process in video, which color would you add? • Orange • Red • Gray • Light Green

[Feedback] Please provide a feedback on this survey. An empty textbox is provided.

H FURTHER DISCUSSION

CollabColor demonstrates an overall framework of how support systems can be built in the context of creative
collaboration while not being obtrusive: (i) formative study to understand pain points of the considered creative task; (ii)
simulation to alleviate issues of lack of data; (iii) RL training to teach and help the system internalize what constitutes
high rewards; (iv) UI intervention and assistance design to ensure non-obtrusiveness. While we consider the co-creative
task of line-art colorization, this framework can be readily extended to other creative tasks such as co-sketching
[40, 46, 50, 119], image enhancement [87], conversational creativity [52, 105], music [41], and various other modalities.
As a starting point, CollabColor interface can be used as a test-bed for data collection to study co-creativity akin
to GWAP systems [110]. Flat colorization is an easier task for users to align preferences as compared to free-form
co-sketching that has a very vast design space. Also, research has shown that coloring aids in mindfulness and reduction
of anxiety in adults [72]. These features further encourage the use of our interface as a data-collection system for
studying co-creativity.
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