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ABSTRACT 
Humans are unique in working collaboratively by sharing and un-
derstanding intentions. However, digital collaboration is daunting, 
especially in creative design life cycles, due to non-linear workfows 
and lack of micro-alignments coupled with the need for robust net-
work connectivity. We present a formative study with creatives to 
identify key themes in conficts that arise in this space. We intro-
duce CollabColor, a user interface that aids in resolving conficts 
for two users synchronously collaborating on a low-touch creative 
task. More specifcally, given an uncolored line-art on a canvas and 
a set of reference images from the users as input, we arrive at design 
goals for an intelligent system that can enhance our interface. We 
fnd that such a system must provide non-obtrusive interventions 
during real-time collaboration to ensure that the fnal colorization 
of the art is coherent, and all the users’ aligned preferences are 
incorporated. 

CCS CONCEPTS 
• Human-centered computing → User interface design; Col-
laborative interaction. 
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1 INTRODUCTION 
Collaboration is a process of accumulating shared information, 
aligning on choices, and acting on it together [38]. Collaboration 
happens everywhere – ranging from music bands to business meet-
ings, and in co-editing documents. In nature, we fnd several ex-
amples of species of ants or bees that live in large colonies and 
cooperate with optimal work division to collect food and survive 
[17]. Ever since the Covid-19 pandemic raged, companies and in-
stitutions have accelerated towards a “digital-frst” approach of 
collaboration. However, due to lack of alignment of daily intentions, 
excessive hidden work, bad network connectivity, and an overall 
lack of common view, collaboration has shifted from unifying and 
exciting to time-consuming and daunting [1]. 

The perils of digital collaboration are worsened in creative de-
sign workfows [35]. Art directors provide reviews across the entire 
creative life cycle leading to a non-linear workfow with signifcant 
back-and-forth between ideation, creation, and the feedback phases. 
In particular, the creation phase involves lots of conficts among 
co-creators when choosing appropriate colors, fonts, shapes, etc. 
wherein simple merging would lead to unpleasant outputs. Care-
fully delegating individual tasks to creators and forgoing collabora-
tion could be a solution, but a recent work by Parikh and Zitnick 
[29] found that individual creators provide value, whereas collabo-
ration leads to more novel and surprising designs. This motivates 
us to focus on easing collaboration in the creation phase. 

Prior to 1962, machines were largely seen as tools for solving 
heavy numerical problems. In 1962, Douglas Engelbart’s [5, 8] pro-
posal of using machines to augment human intelligence propelled 
researchers to think of them as real-time interactive systems. To-
day, humans and machines collaborate in various disciplines to 
produce highly creative outcomes [11, 14, 31]. Recent studies on 
human-machine co-creativity [16, 25] discuss the perception and 
utility of automated tools in supporting creative work, especially 
in the discovery stage of design projects. However, the situation of 
two or more humans collaborating on a creative task with software 
support is still in nascent stages of exploration. A genre of creative 
support tools called Casual Creators 1 [7, 26, 30, 36] have only been 
deployed recently as test-beds to understand this scenario better. 
Building an intelligent system that aids two or more users not only 
in casual co-creative explorations, but also in solving creative tasks 

1Casual Creators are tools that allow users to pursue their creative intentions casually 
without any pressure of achieving certain goals 
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poses several challenges: (i) the system must understand the creative 
motivations of all users in context of the current state of artwork 
and arrive at a high-level shared perspective that adds value; then, 
(ii) the system must promote low-level confict-resolving actions 
during the co-creation process while not obstructing or limiting 
the imagination of users. 

Prior to building such a system, it is critical to understand what 
are the exact conficts that occur in digital synchronous creative col-
laboration. In this paper, we present a formative study to quantify 
such conficts conducted on a novel user interface built to support 
Co-coloring for creatives. Specifcally, we consider fat line-art col-
orization as the creative task of interest. We believe, such a interface 
supported with intelligent algorithms based on the outcome of our 
formative study can help support the research in humanities and 
social studies towards leveraging creativity for improved societal 
mental health. 

We introduce, CollabColor, an user interface that allows two 
users to synchronously collaborate on fat line-art colorization. We 
then conduct user studies to derive insights into key conficts that 
occur during co-creative task of fat line-art colorization. The user 
interface design, the studies, and the insights are detailed in this 
paper. 

2 RELATED WORK 
We discuss prior art around studies on support systems that enhance 
creativity here. CoDraw [19] presents two AI-based neural models 
called drawer and teller that interact to generate a clipart-based 
scene. Each of these models can be used in isolation to assist humans 
in generating creative scenes. While this provides us a framework 
to reason about, we build a system that has a model to assist two 
humans collaborating on a creative task. There are several works 
that consider this teller-drawer architecture to design assistive tools. 
For instance, Creative Sketching Partner [16] presents an AI drawer 
that sketches variants for ideation based on user inputs of visual 
and conceptual similarity. Casual Creators such as GANimals [9] 
foster data collection for human-human co-creativity but do not 
consider ways to resolve conficts. 

There are other examples of interactive support systems such as 
Vocal Shortcuts for designing [20], StreamSketch for livestreaming 
[24], Ideawall for collaborative ideation [34], and Scones [15] for 
sketching via natural language commands but none of them build 
strong intuitions for processing long sequences of user interactions 
or help reduce conficts. 

While no previous work defnes metrics for creative conficts dur-
ing colorization, Gu et al. [12] devise techniques for understanding 
and aiding conficts in the text domain. Kuiter et al. present variED 
[21] and defne conficts and data structures for collaborative edit-
ing in the context of coding software. Similarly, Owhadi-Kareshk 
et al. [28] devises features out of GitHub code versions to predict 
merge conficts. We note that text conficts are easier to quantify as 
compared to creative conficts that are ambiguous and subjective. 

2.1 Interactive Colorization 
Several works in Computer Vision literature tackle the problem of 
colorization of raster images [10, 18, 23, 40, 41]. Zhang et al. [40] 
devise a convolutional neural network that colors grayscale images 

into RGB images. Barnes et al. [3] point out the vast design space 
of creative tasks like colorization and posit that user interactivity 
is paramount to good colorizations. Motivated by this, Zhang el al. 
[41] further fne-tune their architecture to allow for interactivity 
wherein users can pick pixels in the image and enlist their color 
preferences. However, none of these work in the context of co-
creativity that we approach in this paper. 

3 FLAT COLORIZATION OF LINE-ARTS: 
DATASET CREATION 

Our key goal is to identify and understand the conficts that occur 
in synchronous online collaborative colorization. In order to do 
so, we frst create a user interface, CollabColor, that allows two 
users to color the same line art together. We also need to fnd a 
uniform dataset of such line art images that can be shared across 
users for the synchronous colorization task. In order to ground the 
fnal colored images w.r.t how users usually color a given image, 
we need a dataset that not only has line arts (uncolored) but also 
contains a corresponding colored version of the same image (which 
becomes a reference when deriving insights) 2. Further, the dataset 
also needs to have sufcient number of semantic segments so that 
multiple users can collaborate. Easy images won’t really sufce. 

We obtain fat colored raster images from the web and convert 
them to SVG images. Inspired by automatic generation of fake im-
ages using Photoshop Scripting [37], we process a large batch of 
raster images and convert them to SVGs using built-in tracing func-
tionality of a popular image editing tool. Although raster-to-vector 
tracing is a hard task [22], fat colored images with closed line seg-
ments are easier to trace. We thus obtain our dataset of 255797 SVG 
images of 4418 unique line-arts, boiling down to nearly 58 alternate 
colorings per line-art. This captures the inherent multimodality 
of the coloring process [6] and ensures that our images cater to a 
diverse set of users. Figure 2 shows a schematic diagram of our data 
preparation pipeline. Figure 3(a) shows an uncolored line-art with 
six alternate colorings and associated tags. From Figure 3(b), we can 
see that our images in our dataset contain 30 segments on average, 
making it feasible for two users to iteratively color and impart their 
preferences. These images are pre-loaded into our user interface 
for users to start coloring them together. Any image outside this 
can also be potentially be used, however to maintain a consistency 
in our formative study, we only use this dataset. Our dataset is 
not publicly available as of now but we hope the detailed steps 
presented above can aid in reproducing dataset. 

4 USER INTERFACE DESIGN 
To understand the pain points of creative collaboration, we build a 
user interface (UI) that enables two users to color a line-art simul-
taneously. Figure 1 shows screens of two users (S1 and S2) coloring 
the line-art of an elephant. Our UI is inspired from collaborative in-
terfaces such as Miro, Figma 3, etc. to provide a realistic experience 
to the users. We use Twilio’s[2] real-time state synchronization API 
to enable synchronous coloring. Collecting reference/inspiration 

2Note that we did not fnd publicly available datasets that matched our requirements, 
hence the need to frst create our own uncolored images.
3https://miro.com/, https://www.fgma.com/ 
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Figure 1: CollabColor: Screens of two users S1 (top) and S2 (bottom). Users can pick colors from the palette based on their 
inspiration images to color the line-art displayed in the canvas. The various components of our UI are labelled in the red 
boxes. User S1’s inspiration images present a happier emotion with bright hues; User S2’s images present a peaceful emotion 
with light green hues 

images into a moodboard to diversely color an artwork is a stan-
dard practice in designer’s toolbox [25]. We mimic this scenario by 
providing two inspiration images to each user that cater to certain 
emotions, using the Behance Artistic Media (BAM) dataset [39]. 
Here, user S2 gets peaceful/calm images in the form of sceneries, 
large green felds, etc. Colors can be picked either from the palette 
or from the canvas. We also display the most recent color picked by 
each user to aid in understanding each other’s preferences. Here, 
users S1 and S2 have last picked violet and green colors respectively. 
Once both the users are done with iterative coloring the current 
line-art and click the “Done/Next” button, we proceed to the next 
line-art. 

This is a browser-based interface and can be easily accessed in 
any standard browser. 

5 FORMATIVE STUDY 
We conduct a formative study in three modes by altering the type of 
reference images displayed (no images, ground-truth (GT) images,& 
inspiration images) with 20 user pairs consisting of novices (under-
graduate STEM students of age 18-20 in India) and experts (senior 
designers in an industrial lab of age 28-40 in India). We ask the 
users not to communicate via any other medium beyond the canvas 
(user interface). While several collaborative platforms provide users 
with options to video/voice-call or chat via text, we intend to study 
scenarios wherein users do not have means to communicate either 
due to poor network quality or lack of cognitive bandwidth [13]. At 
each click (action / turn) t for a given SVG image, we record a triplet 
(ut , st , ct ) corresponding to the user ut (u1or u2) coloring a segment 
st (segment ID in the SVG image) with color ct . We also restrict 
the number of turns per user to T = 100. Additionally, we conduct 
informal interviews and query users about their experience and 



CHI ’23, Apr 30–May 06, 2022, New Orleans, LA Suryateja BV, Jeet Patel, Atharva Naik, Yash Parag Butala, Sristy Sharma, and Niyati Chhaya 

�����������������������

�������
�
��������������

�	
���������
������������

��������� ������������

����	�������
������
�����

�����

Figure 2: We use a popular image editing tool’s built-in tracing functionality to extract SVG image (colored) and uncolored 
line-arts. 

Figure 3: Part (a) demonstrates six alternate colorings of the same line-art capturing the inherent multimodality and diversity 
of colorization process [6]. Part (b) demonstrates a histogram of the number of segments per SVG image in our data. Values 
are computed over unique line-arts. 

ways in which they prefer to be assisted. We identify several key 
themes in conficts that arise while collaborating on our creative 
task. 

F1: Understanding intentions is hard. Users found it difcult 
to relay their intentions just using colors on the canvas. Given that 
our task involves creative decision making, communication be-
comes paramount to arrive at a coherent colorization. Users could 
not verbally communicate in our setup, leading to several conficts. 
They take multiple actions with excess recoloring in an attempt 
to align their preferences. Table 1 shows the average number of 
actions taken to color line-arts. We see that when inspiration im-
age were not provided, the number of actions taken were more 
than twice the average number of segments. Around 12% of all 
sequences had lengths greater than 80, indicating the long duration 
of the task. Cross-recoloring conficts are particularly dissatisfying 
to the users, wherein a user alters the color of the segment col-
ored by the other user. Formally, a recoloring action is recorded 
when a user alters the color of an already colored segment. Let 
S1, S2, . . . , S |S | represent segment IDs of a given line-art where the 
total segment count is |S |. Then, the count of recoloring actions ÍT ÍNis given by =1 I (st = Si ) − |s1, s2, . . . , sT |, where I (.) is the t =1 i 
indicator function ( I (C) is equal to 1 if the condition C is true, else 

it is equal to 0), and |.| is the count of unique segments in each 
sequence. ÍT 

Of these actions, cross-recoloring actions (for user 1) are given by,ÍN 
=1 I (st = Si , ut = U1, fu (Si ) = U2), where fu (Si ) denotest =1 i 

the user that previously colored the segment Si . We also compute 
the number of ‘reversion’ actions wherein users take an undo turn, 
that is, revert the current action by returning to the previous state. 
Table 1 also shows the percentage of all these actions. We see that 
the recoloring actions are lower in the mode where GT images 
are provided as reference, whereas they are high where no inspira-
tion or reference is available. This may be due to the provision of 
expected outputs through GT images, which helps in giving a de-
fnitive goal for users to pursue at the cost of limiting their novelty 
and imagination. 

F2: Varying pace of actions leads to multiple conflicts. Some 
users color extremely fast and dominate, giving no opportunity to 
the other user to think or act. This forces the preferences of one 
user over the other and leads to skewed turn-taking and inaction 
from dominated users. To measure this efect, we defne a metric 
called dominance score. Formally, dominance of user U1 over user 
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Mode of actions Recoloring Recoloring Reversion Score sense Score 
(↓) (↓) (↓) (↓) (↓) Score (↑) (↑) 

No  
(N = 77) 

Image 62.6 31% 17% 8.0% 0.32 0.11 0.34

GT Images 49.8 28% 10% 11.0% 0.37 0.26 0.41(N = 20)

Inspiration 33.7 30% 12% 11.7% 0.47 0.21 0.42

Avg no. % % Cross % Dominance Common- Harmony 

Images (N = 229) 

Table 1: Formative study of our user interface with three modes varying the reference images (no image, GT images, inspiration 
images from BAM dataset). The value N indicates the number of SVG line-arts colored by our user pairs. Arrow mark (↑) 
indicates that higher value is typically better. 

U2 is given by 

TÕ 
exp (−λt) (Count1 (u1:t ) − Count2 (u1:t )) /Z 

t =1 Ítwhere Countk (u1:t ) = =1 I (ui = Uk ) represents the number of i 
actions taken by user Uk so far and Zd is a normalization factor. We 
sum the excess number of actions taken by one user over the other 
after each action, to capture the cumulative impact of dominance. 
Note that dominating actions at the beginning of the task are more 
impactful than those that occur towards the end because early 
actions determine the overall mood and direction of colorization. 
We thus multiply an additional exp (−λt) factor with λ = 0.05 to 
capture the decreasing impact of dominating actions. Normalization 
factor Zd is the dominance score when only one user takes all the 
actions (with T = 100), given by is 3.84. Table 1 displays the average 
value of dominance scores over all sequences in each mode. A higher 
dominance score indicates greater number of conficts. 

While our measure is not perfect, we found that it correlates 
well with users’ feelings based on our informal questions. Figure 
4(a) shows a qualitative sequence of high dominance score leading 
to conficts and overall poor output. Until action turn t = 10, user 
U1 forces his preference of blue hue while user U2 barely imparts 
her greenish hue to the canvas. This leads to a creative confict 
and U2 cannot visualize how to bring about the greenish hue. By 
action turn t = 25, U1 recolors most of the area colored by U2, while 
U2 is yet to fnd a possible middle ground. Towards action turn 
t = 40, U2 decides to help U1 by altering her preferences and takes 
up colors with dark blueish/purple hue, recoloring and corrupting 
some areas that U1 has already colored. The fnal output lacks 
coherence and is misaligned to both their preferences. Moreover, 
both users have a unpleasant experience collaborating, leading to a 
lose-lose collaboration [33]. 

F3: Novice users need help in aligning preferences. Conficts 
arise when rules of symmetry are broken, such as, legs of an animal 
having diferent colors. Some users found it difcult to match each 
other’s preferences while not violating spatial symmetry. From 
Figure 4(b), we can see that the body and legs of elephant are 
colored diferently, leading to an incoherent output. We defne a 
metric called common-sense score to capture this scenario, given by 

the average number of color matches for any two segments that 
have the same ground-truth color. Formally, common-sense score 
is � � � � � 
ΣT 
=1Σ

|S | |S | 
CGT (Si ) = CGT � Sj ,Ct (Si ) = Ct Sj /Tt i=1Σj=1, j,i I 

(1) 

where CGT (.) gives the ground-truth color of a segment and Ct (.)
gives the color of a segment at turn t . Note that our score is an ap-
proximate measure as it is impossible to take all rules of symmetry 
into consideration. For instance, our score penalizes the case when 
shirt and trousers of a boy have the same colors in ground-truth 
image but users in the study have colored it diferently, which does 
not break any rule of symmetry. In our interviews, users felt that 
there were too many colors to choose from and it was very unclear 
to arrive at harmonious color combinations. We use the notion of 
harmony model H(c1, c2) [4, 27, 32] to quantify this scenario, which 
computes the harmony between two colors by quantifying the hue, 
luminance, and chroma efects. Formally, harmony score is given by � � 

|S | |S | (xi ,yi ) − x j ,yj 2 � � � � 
ΣTt =1Σi=1Σj=1, j,i H Ct (Si ) ,Ct Sj /T (2)

Zh 

where the harmony model’s outputs are scaled with the L2 distance 
between centroids (xi ,yi ) of each segment i to capture the fact that 
the coloring is harmonious over a wide area of the line-art. Nor-

|S | |S | � �
malization factor Zh is given by Σi=1Σj=1, j,i (xi ,yi ) − x j ,yj 2. 
A low score on either of the above defned metrics indicates a high 
chance of conficting experience. 

Qualitatively, users found the mode with no inspiration images 
to be very tricky to deal with, since they were not sure if the overall 
colorization was heading in the right direction. The mode with 
GT reference images was too obtrusive and provided no means 
to think in a novel fashion. The mode with inspiration images 
was preferred greatly since it provided a reference to compare the 
canvas with, while also allowing users to be creative and choose 
novel colors. Overall, many users lacked clarity in dividing the 
canvas into two meaningful parts, delegate their preferences, and 
collaborate seamlessly. They were open to assistive systems that can 
ease their collaborative experience to arrive at a win-win situation 
[33], while being non-obtrusive. Our qualitative fndings coincide 
with the observation in Main and Grierson [25] that creatives are 
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Figure 4: Part (a) demonstrates a sequence showing the conficts that arise due to varying pace of actions. One user typically 
takes more moves and dominates the other in terms of overall direction of the colorization. Part (b) demonstrates the line-art 
of an elephant colored by users in the mode with inspiration images (shown at the bottom). As evident, the quality is poor 
with incoherent colors for the feet and body of elephant. 

open to AI-based support tools provided they do not minimize the 
role of the creative. 

6 DESIGN GOALS FOR INTERVENTIONS 
Based on the formative study, analysis, and literature review, we 
identify the following design goals for a advanced software system 
to build interventions that can aid in creative collaboration of users 
during the co-colorization task: 

• G1 Facilitate communication of intentions and aid in resolution 
of conficts. Users generally want to align preferences and 
help each other out. They prefer taking fewer steps to color, 
avoid cross-recoloring [F1], and domination [F2] in turn 
aiding in building trust. Thus, interventions and features 
that can imagine the colored image in the context of user 
preferences and relay intentions from one user to the other 
can help in converging their perspectives. 

• G2 Provide feedback on collaborative strength and overall qual-
ity of colored line-art. Users prefer to track their performance 
on the task which can help in ensuring that they are not too 
dominant at any stage of coloring [F2]. 

• G3 Provide assistive tools to color harmoniously. Novice users 
feel overwhelmed by the multiple segments and color choices 
provided to them leading to spatial (symmetry) conficts [F3]. 
Thus, interventions and features that can sensibly reduce 
the available choices while staying true to user preferences 
add signifcant value. 

• G4 Interventions should be non-obtrusive. A common prereq-
uisite of all creative assistance tools [25] is that they should 
not interfere in the task and hinder the imagination of users. 
Previous research [29, 33] has shown that initial conficts 
can lead to a more creative fnal product. 

Simple hard-coded rule-based methods based on user action 
counts or segment color counts may help with tracking the state of 
the image being colored using a CollabColor-like interface, but they 
do not understand the semantics of the image or how user prefer-
ences interact with the image being colored. Moreover, hard-coded 
algorithms do not take the sequential user history into account 
beyond simple count statistics. We thus believe that a AI-based 

learning approach that acts as a facilitator between the two users 
can help. We plan to take these insights from the studies towards 
building such a system. 

7 CONCLUSION 
We introduce CollabColor, a user interface that helps study how 
creatives collaborate in a synchronous setup, specifcally studied via 
the task of line-art colorization. We identify and defne key conficts 
that occur in the considered co-creation task using a formative study 
conducted using the CollabColor interface with both novice as well 
as expert creatives. We further empirically quantify the fndings of 
the studies using various scores from computational literature and 
defne design goals for a potential advanced computational system 
to aid collaborative co-creativity. We now plan to extend this work 
towards building a intelligent system based on the insights of this 
study to aid digital co-creativity in this virtual world. 
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