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ABSTRACT
Advisors: Prof. Ketan Rajawat (EE), Prof. Piyush Rai (CSE)

Modelling sequential interactions between entities is crucial in
various domains such as - social networks, e-commerce, educa-
tion, and epidemiologyv(disease netwoks). For instance, wireless
network selection problem could be seen as a set of sequential
interactions between various users and available networks/items
(WiFi, LTE, UMTS, LAN). While conventional recommender sys-
tems offer a simple solution to these problems, they do not model
the temporal aspects that real-world instances demand. Also, in the
real world, there are lots of items that we could choose from and
potential users to cater to, often in the millions. Hence, it becomes
prohibitive to use either conventional or sequential recommender
systems to get the task done. Thus, we turn towards clustering of
items and users in the bandit setting and leverage the correlations
in the item set and user set to reduce the complexity of our model
and speed up inference. Bandits, by definition, take up an online
learning procedure suitable for modelling sequential interactions.
We model clustering of items in a generative fashion by extending
the works of DYN-UCB[11] and Online Interactive Collaborative
Filtering for MABs [14], and show promising results.
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1 RELATEDWORK
While there is a fairly large volume of work associated to conven-
tional recommender systems, interest in sequential recommender
systems has grown only over the past decade. We cover various
approaches to sequential prediction relevant to our work in the
following paragraphs. For an extensive survey into this area, please
refer to [16] or [15].
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Multi-arm Bandits: Bandit algorithms [2, 8, 9, 12], centered
on explore-exploit trade off, are well suited to the dynamic en-
vironment that we are interested in due to their intrinsic online
learning nature. [5] is one of the first papers to propose an efficient
Thompson sampling-based procedure for online Bayesian Matrix
Factorization. [17] uses a time-varying reward mapping function,
where the reward weight vectors are modeled using state space
equations. Processing large feature vectors is a time-consuming
process, so [1] uses bandits to learn a masking over feature vec-
tors. In a similar vein of improving efficiency, many recent works
on bandits focus on clustering of users and items. [3] proposes a
multi-task learning setting to pool information of items together
while doing reward regression. Other works [4, 7, 18] cluster users
and items into classes and make the reward vector same for all
members in a class - for instance, CoFiBa [7] co-clusters users and
items dynamically, but the algorithm is quite involved and assumes
that the content universe is known in advance. [4] improves upon
CoFiBa by proposing a simple algorithm with context-dependent
clustering, and avoiding the graph formulations of CoFiBa.

2 OURWORK
We present two methods to utilize the correlations among depen-
dent arms in the multi arm bandit setting.

2.1 Dynamic Clustering of Arms
One shortcoming of [11] is that the number of clusters must be
set in advance as a hyperparameter. We extend this work with a
non-parametric clustering algorithm which automatically infers
the most suitable number of clusters (𝐾) based on the data. We
incorporate the DP-means algorithm proposed in [6] to the DYN-
UCB algorithm. We provide a brief overview of DP-means below.

2.1.1 DP-means: This is a Bayesian non-parametrics based algo-
rithm for hard K-means clustering. The algorithm is inspired by
the observation that the EM algorithm for mixture of Gaussians
approaches k-means in the limit of variance tending to zero i.e.
when the covariance matrices corresponding to the clusters in a
GMM are assumed to be 𝜎𝐼 and 𝜎 → 0, the EM steps resemble
the k-means steps. This form of argumentation is also known as
variance asymptotics, and when applied to the Gibbs sampler for a
standard Dirichlet process mixture model, it yields the following
non-parametric hard clustering algorithm. The essential modifica-
tion in the working of algorithm is as follows:

(1) At a given point of time, suppose there are 𝐾 clusters. Com-
pute the distance of the point 𝑥𝑖 from 𝐾 cluster means 𝜇1...𝐾 .

(2) If the smallest of the distances (say 𝑑𝑖𝑘 ) is less than hyperpa-
rameter 𝜆, put the point in the cluster 𝑘 . Else, put the point
in a new cluster 𝐾 + 1 and recompute the cluster means.

As we can see, this method is very similar to the k-means proce-
dure except for the 𝑙𝑎𝑚𝑏𝑑𝑎 hyperparameter and assigning to a new
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cluster. Intuitively, 𝑙𝑎𝑚𝑏𝑑𝑎 is the distance from a potentially new
cluster. In fact, when we write a simple objective function for the
algorithm, it turns out to be the usual k-means objective with an
additional penalty on number of clusters 𝐾 (like the Akaike Infor-
mation Criterion). The objective is to minimize over all possible
assignment of points to clusters:

𝐾∑
𝑐=1

∑
𝑥 ∈𝑙𝑐

∥𝑥 − 𝜇𝑐 ∥2 + 𝜆𝐾

2.1.2 DYN-UCB. : Here, users are clustered based on their past
activity. Given, a user𝑢𝑡 at time 𝑡 , the algorithm predicts the optimal
arm 𝑎𝑡 (item) to pick based on the cluster properties of the user. The
algorithm is an extension of the Lin-UCB algorithmwhich considers
a linear relationship between reward and item context vector. To
enable exploration, the algorithm uses the Upper Confidence Bound
(UCB)method. Lin-UCBmethod considers N bandits for N users and
learns a weight vector for each user. Dyn-UCB method somewhat
does the same, but the weight vectors of each user are guided by
a collaborative step involving clusters. We present the algorithm
below.

(1) Initialize user covariance weights (𝑀) and biases (𝑏). Ran-
domly assign the users to 𝐾 clusters. Compute the weight
vector (ie, how the cluster interacts with item context vector
to produce reward) as follows:

𝑀̂𝑘 = 𝐼 +
∑
𝑢∈𝐶𝑘

(𝑀𝑢 − 𝐼 )

𝑏𝑘 =
∑
𝑢∈𝐶𝑘

𝑏𝑢

𝑤̂𝑘 = 𝑀̂−1
𝑘
𝑏𝑘

(2) Draw a user 𝑢𝑡 at timestep 𝑡 . Observe the context for all the
arms 𝑥𝑡,𝑎 . Find the arm with the highest UCB given by,

𝑤̂𝑇
𝑘
𝑥𝑡,𝑎 + 𝛼

√
𝑥𝑇𝑡,𝑎𝑀̂

−1
𝑘
𝑥𝑡,𝑎 log (𝑡 + 1)

Note that the term in the square root is essentially the vari-
ance of reward (𝑤̂𝑇

𝑘
𝑥𝑡,𝑎). Let the arm with maximum UCB

be 𝑎𝑡 , and the context vector is 𝑥𝑡 = 𝑥𝑡,𝑎𝑡
(3) Observe the reward 𝑟𝑡 by recommending 𝑎𝑡 . This is available

in the dataset.
(4) The user updates are given below.

𝑀𝑢𝑡 = 𝑀𝑢𝑡 + 𝑥𝑡𝑥𝑇𝑡
𝑏𝑢𝑡 = 𝑏𝑢𝑡 + 𝑟𝑡𝑥𝑡
𝑤𝑢𝑡 = 𝑀−1

𝑢𝑡
𝑏𝑢𝑡

(5) Reassign the user 𝑢𝑡 to its closest cluster based on updated
weights. Update the cluster𝑀 and 𝑏 parameters.

As is clear, the algorithm takes number of clusters𝐾 as an input. We
alleviate this dependence by incorporating the DP-means algorithm.

2.2 Particle Learning for Clustering
2.2.1 Online Interactive Collaborative Filtering. This model has
been proposed by [14]. Here, we model the user as a document
and the items that a user picks as words, making it intuitive to
apply the Latent Dirichlet Allocation (LDA) setting, which is a

Figure 1: Plate diagramof LDA+Bayesian LinearRegression
Model, from [14]

heirarchical mixture of multinomials. Each user is modelled by
a sample from a Dirichlet distribution, which indicated mixing
proportions over a set of topics of size K. The exact topic is sampled
from a Multinomial distribution parametrised by the user vector.
The topic vector defines a distribution over the items, indicating
how likely a particular item (word, in LDA terminology) is to be
chosen by the user (or present in the document). The arms are
modelled as samples from a Gaussian. The generative model is
presented below. We refer the reader to [14] for a detailed analysis
of the generative model.

(1) Draw 𝑝𝑚 ∼ Dir(𝜆) ∈ 𝑅𝐾 for the user 𝑚 picked at time 𝑡 .
This represents the user’s preference over 𝐾 latent topics of
items.

(2) Draw 𝜙𝑘 ∼ Dir(𝜂) ∈ 𝑅𝑁 for the latent aspect 𝑘 . This is the
item distribution for topic 𝑘 .

(3) Draw 𝑧𝑚 ∼ Mult(𝑝𝑚) which represents the topic that user
𝑚 picks.

(4) Draw 𝑥𝑚 ∼ Mult(𝜙𝑧𝑚 ) which represents the item that user
𝑚 picks based on the latent topic chosen.

(5) For each item 𝑛, sample a Gaussian mean item vector given
by,

𝜎2𝑛 ∼ IG(𝛼, 𝛽)
𝑞𝑛 ∼ N(𝜇𝑞, 𝜎2𝑛Σ𝑞)

where 𝛼, 𝛽, 𝜇𝑞, Σ2𝑞 are hyperparameters.
(6) Finally, the reward is given by, 𝑟𝑚,𝑡 ∼ 𝑁 (𝑝𝑇𝑚𝑞𝑛, 𝜎2𝑛).
Inference for this model is done via a particle filtering-based

Thompson sampling procedure. Particle sampling uses a set of
weighted samples known as particles to estimate the posterior
density in an online setting. Each particle is a container with the
states of the hyperparamters and latent factors of the model at any
given point in time. A set of diverse particles thus provides a much
better representation of the posterior than a point estimate when
the posterior is not available in closed form. As we are sampling
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from the posterior, the procedure naturally falls into the probability
matching or Thompson sampling family of algorithms.

In order to proceed with the algorithm, we need the following:

• The likelihood of the observed data given the parameters
at each time instant. This determines the weight of each
particle at any given round. Basically, if a particle is able to
better explain the observations, it has a higher chance of
being carried over to the next round.

• The posterior over the latent states. In the ICTR model, this
is effectively the posterior over the latent factor 𝑧𝑚 , or the
choice of the topic for each user. As 𝑧𝑚 is sampled from a
Multinomial with a Dirichlet prior, the conditional posterior
is also a Multinomial distribution by conjugacy.

• Appropriate sufficient statistics from the data for the update
of the hyperparameters.

For reference, the sufficient statistics for parameters are updated as
follows:

Σ′𝑞 = (Σ−1𝑞 + 𝑝𝑚𝑝𝑇𝑚)−1

𝜇 ′𝑞 = Σ′𝑞 (Σ−1𝑞 𝜇𝑞 + 𝑝𝑚𝑟𝑚,𝑡 )

𝛼 ′ = 𝛼 + 1
2

𝛽 ′ = 𝛽 + 1
2
(𝜇𝑇𝑞 Σ−1𝑞 𝜇𝑞 + 𝑟𝑇𝑚,𝑡𝑟𝑚,𝑡 − (𝜇𝑇𝑞 Σ−1𝑞 𝜇𝑞)′)

𝜆′
𝑘
= 𝐼 (𝑧𝑚,𝑡 = 𝑘)𝑟𝑚,𝑡 + 𝜆𝑘

𝜂 ′𝑛 = 𝐼 (𝑥𝑚,𝑡 = 𝑛)𝑟𝑚,𝑡 + 𝜂𝑛

and the subsequent sampling follows the procedure as presented
in the generative process.

2.2.2 ICTR with Gaussian Mixture Models. While the previous
model provides a rich framework for modelling dependencies, there
are a few key limitations of the same. Firstly, the LDA assumption
is quite strong and inflexible. Secondly, the intuition behind the
reward computation seems somewhat flawed. The reward is esti-
mated to be the dot product between the user vector and item vector,
hence intuitively one would expect higher rewards when the user
and item have similar representations. However, the user vector
is part of the D-simplex (as a sample from a Dirichlet) whereas
the item vector could be from anywhere in R𝑛 , which not only
limits the extent of similarity possible, but also implies that the
dot product is like an weighing over the dimensions of the feature
representation of the item, which has no explicit semantic signifi-
cance. Thirdly, there is no clustering over the items, which means
that certain steps become highly computationally expensive, such
as sampling ‘number of items’-dimensional vectors for the topic
representations.

In order to remedy this, we propose that both the users and items
may be sampled from a more flexible Gaussian Mixture Model. For
simplicity, we will assume that the item vectors (or context) is
known beforehand, and thus model only the user vectors. One may
extend the model to the item vectors in an analogous fashion if
necessary. The plate model for the generative story is in Figure 2.
The generative story itself is as below, once a user has been chosen
randomly from the set of users:

Figure 2: Plate diagram of ICTR-based GMM clustering

(1) Draw 𝑧𝑚 ∼ Multinomial(𝜋) ∈ 𝑅𝐾 for the user𝑚 picked at
time 𝑡 . This represents the index of the cluster to which this
user belongs.

(2) Draw 𝜎𝑘 ∼ Inverse-Gamma(𝛼, 𝛽) and 𝜇𝑘 ∼ N(𝜇0, 𝜎𝑘Σ𝑛 , for
the cluster center to which the user belongs. This is also
taken as the user feature vector 𝑝𝑚 .

(3) For each item 𝑛, sample a reward variance as 𝜔2
𝑛 ∼ IG(𝛾, 𝜃 )

(shape-scale parametrisation) and compute the reward as
𝑟𝑚 ∼ N(𝑝𝑇𝑚𝑥𝑛, 𝜔2

𝑛).
The arm with the maximum estimated reward is chosen, and the
real reward is received.

Assuming there are B particles composed of the latent factors
and hyperparameters, the weights 𝜌𝑖 for resampling are given by

𝜌𝑖 ∝
𝐾∑
𝑘=1

𝜋𝑘N(𝑟𝑚 |𝜇𝑇
𝑘
𝑥𝑛, 𝜔

2
𝑛)N (𝜇𝑘 |𝜇0, 𝜎2𝑘Σ0)

i.e. the likelihood of the reward after marginalising over the latent
factor 𝑧𝑚 . Note that

∑
𝑖 𝜌𝑖 = 1.

The posterior over the latent factor 𝑧𝑚 may be given by 𝑧𝑚 ∼
𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝜆), where

𝜆𝑘 =
𝜋𝑘N(𝑟𝑚 |𝜇𝑇

𝑘
𝑥𝑛, 𝜔

2
𝑛)∑

𝑘 𝜋𝑘N(𝑟𝑚 |𝜇𝑇
𝑘
𝑥𝑛, 𝜔

2
𝑛)

i.e. the proportions by which the cluster means match the reward.
The updates for the hyperparameters are similar to that of ICTR,

so we can reuse their equations as appropriate.

Σ′0 = (Σ−10 + 𝑥𝑛𝑥𝑇𝑛 )−1

𝜇 ′0 = Σ′0 (Σ
−1
0 𝜇0 + 𝑥𝑛𝑟𝑚)

𝛼 ′ = 𝛼 + 1
2

𝛽 ′ = 𝛽 + 1
2
(𝜇𝑇0 Σ

−1
0 𝜇0 + 𝑟2𝑚 − (𝜇𝑇0 Σ

−1
0 𝜇0)′)

𝛾 ′ = 𝛾 + 1
2

𝜃 ′ = 𝜃 + 1
2
(𝑟𝑚 − 𝑝𝑇𝑚𝑥𝑛)2

𝜋 ′
𝑘
=
𝐾 (𝜋𝑘 + 𝐼 (𝑧𝑚 = 𝑘)𝑟𝑚)

𝐾 + 𝑟𝑚
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The other random variables 𝜎2
𝑘
, 𝜇𝑘 , 𝜔𝑛 are resampled as per the

generative story with the new parameters.
The overall algorithm is as follows:
(1) Randomly initialise B particles containing the parameters
(2) For t = 1, . . . , T
(a) User𝑚 arrives for recommendation
(b) Estimate the reward for each item as per the generative

story for each particle, and take the final estimated reward
as the average of these. Choose the arm with the highest
average reward.

(c) Receive real reward for the chosen arm.
(d) Compute weights of each particle 𝜌𝑖 using the real reward.
(e) Resample the particles according to the weights 𝜌𝑖 .
(f) For each particle, resample 𝑧𝑚 as per the posterior distri-

bution, update the hyperparameters using the sufficient
statistics, and resample the other parameters like cluster
centres and variances.

3 EXPERIMENTS
3.1 Dataset and Setup
We use the publicly availableDelicious dataset 1 and follow [11] in
preprocessing the data for our experiments. The dataset consists of
1867 users, 69226 bookmarks (items), 69226 tags assigned by users
to the bookmarks. The task is to predict if a user would bookmark a
given website (item) or not. To prepare the item context vector, we
use the tags for items and do a TFIDF-style feature representation.
We then carry out a PCA to bring the context vector down to 25
dimensions. For training, since we can’t present all the 69226 items
at once to a user, we select one item that user did pick and 24
items randomly that user didn’t pick (Note that even in real-world
instances of choosing items, users get to see only 20 items on a
page). The algorithm gets a payoff of +1 if it picks the right item
for the user of the 25 avaialable items, and a payoff of −1

24 if it picks
the wrong item.

3.2 DP-Means + Dyn-UCB
We found the choice of 𝜆 to be very important. When we choose a
poor value of 𝜆, all the users fall into the same cluster. To calculate
𝜆, we followed the farthest-first heuristic. We take a small subset of
items as𝑇 and take a global mean. We iteratively add the items that
are farthest to this mean for 𝐾 times (𝐾 is the approximate number
of clusters we expect). The distance of the next farthest item (ie,
(𝐾 + 1)𝑡ℎ iteration) is taken as 𝜆. Code for this experiment can be
found here 2

3.3 Particle Learning for Clustering
In Table 1, we show how the total reward for the two algorithms
changes as we vary the number of particles. Code for this experi-
ment can be found here 3

It is seen that for low number of particles, ICTR-1 fares well,
whereas for high number of particles, ICTR-2 with GMM over user

1https://grouplens.org/datasets/hetrec-2011/
2http://tiny.cc/n2k0qz
3http://tiny.cc/u3k0qz

Particles ICTR-1 ICTR-2
2 56 42
4 67 56
8 74 68
10 81 92

Table 1: Total Reward obtained after 1500 iterations for the
two algorithm variants

Figure 3: Total Reward vs Number of Iterations

features works better.

The graph in Figure 2 shows how the total reward varies with
number of iterations for the algorithms that we’ve tried. We ran
ICTR-1 and ICTR-2 with 2 particles. From the graph, we see that
both the variants of ICTR perform far better than DP-DynUCB.
ICTR-1 is better than ICTR-2 since low number of particles are
used. With a greater number of particles, we can expect ICTR-2 to
fare better.

4 CHALLENGES AND FUTUREWORK
In the case of Dyn-UCB with DP-means, we found that the hyper-
parameter 𝜆 had to be tuned quite carefully. Both variants of the
ICTR algorithm were remarkably slow, considering that they are
both heavily sampling-based algorithms. This made it difficult to
train them for even for a full epoch.

Keeping the above in mind, a few extensions of this work could
be:

• Methods like parallel sampling [10] and variational inference
(see section 5 of [13]) may be used to speed up inference.
This also allow more thorough experimentation to see how
ICTR-2 performs in the long run.

• Theoretical bounds for regret would establish the validity of
the algorithms, especially considering howmuch fine-tuning
is necessary for all the algorithms discussed. We found that
proving this in the general case was quite non-trivial. Inter-
ested readers may find [3] instructive.
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• Our experiments involve the casewhere item representations
are fixed in advance. Further experimentation and work on
the case where both are learned would be useful, although
we expect that the performance would degrade in an online
setting due to higher variability.

• Using richer, time-dependent embeddings for the users and
items could enhance performance remarkably, as has been
observed in various domains such as vision and natural lan-
guage understanding.
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