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2 Introduction

Clustering is a method for classifying massive data if there is no early knowledge of classes.
Since new concepts such as cloud computing and big data have emerged in recent years, re-
search work on unsupervised approaches such as clustering algorithms to derive information
from this flood of data has been extended. In the case of large data sets, it is almost impossible
to use supervised classification methods, although clustering can solve this problem using un-
supervised approaches. In various scientific fields, clustering time series data is used to discover
patterns that allow data analysts to extract valuable information from large and complex data
sets.

Data in many applications is stored as time-series, for example sales data, stock prices, exchange
rates in finance, weather data, biomedical measurements (e.g., blood pressure and electrocar-
diogram measurements), biometrics data (image data for facial recognition), particle tracking
in physics, etc. Such a massive amount of time-series data has opened up an opportunity for
various researchers in the data mining community to extract and analyse valuable information
that is hidden in the data.

2.1 Time-Series Clustering

Given a dataset of n time-series D = {F1, F2, . . . , Fn}, the methodology of partitioning D into
C = C1, C2, . . . , Ck such that homogeneous time-series are grouped together based on some
similarity measure. Here Ci is a cluster such that D = ∪ki=1Ci and Cj ∩ Cj = φ∀i 6= j.

Time-series clustering is a challenging issue because first of all, time-series data are often far
larger than memory size and consequently they are stored on disks. This leads to an exponential
decrease in speed of the clustering process. Second challenge is that time-series data are often
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high dimensional which makes handling these data difficult for many clustering algorithms and
also slows down the process of clustering. Finally, the third challenge addresses the similarity
measures that are used to make the clusters. To do so, similar time-series should be found which
needs time-series similarity matching that is the process of calculating the similarity among the
whole time-series using a similarity measure. This process is also known as “whole sequence
matching” where whole lengths of time-series are considered during distance calculation.

However, the process is complicated, because time-series data are naturally noisy and include
outliers and shifts, at the other hand the length of time-series varies and the distance among
them needs to be calculated. These common issues have made the similarity measure a major
challenge for data miners.

2.2 Applications

Time-series clustering can be broadly divided into two groups: The first one is a set of algorithms
that are used to find patterns that frequently appear in the data. The second one is related to
finding patterns that occur by chance in the data. Various real world problems related to this
task are as follows:

• Anomaly/novelty detection: For eg., in sensor databases, clustering of time-series
which are produced by sensor readings of a mobile robot in order to discover the events

• Recognizing dynamic changes For eg., in financial databases, it can be used to find
the companies with similar stock price movements

• Prediction and recommendation For eg., in scientific databases, it can address prob-
lems such as finding the patterns of solar magnetic wind to predict today’s pattern

• Pattern identification For eg., in marketing database, different daily patterns of sales
of a specific product in a store can be discovered

2.3 Different Types of Clustering

There are three categories for time series clustering:

2.3.1 Whole time-series clustering

Whole time-series clustering is considered as clustering of a set of individual time-series with
respect to their similarity. Here, clustering means applying conventional (usually) clustering on
discrete objects, where objects are time-series.
Their are four components of whole time-series clustering.

1. Time-Series Representation

2. Similarity or Distance Measures

3. Clustering Prototypes

4. Time-Series Clustering

2.3.2 Subsequence clustering

Subsequence clustering means clustering on a set of subsequences of a time-series that are
extracted via a sliding window, that is, clustering of segments from a single long time-series.
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2.3.3 Time point clustering

Time point clustering is another category of clustering. It is clustering of time points based on a
combination of their temporal proximity of time points and the similarity of the corresponding
values. This approach is simialr to time series segmentation. However, it is different from
segmentation as all points do not need to be assigned to clusters, id., some of them are considered
as noise.

2.4 Our Work

We study and implement a model based approach for this task using mixtures of autoregressive
moving average (ARMA) models. This can be thought of as a time series equivalent of the
Gaussian Mixture Model, that is a well known probabilistic model for time independent data
clustering. We derive the expectation-maximization(EM) algorithm for this mixture model. For
the model selection problem ,i.e to find an optimum value of number of clusters, we use the
Bayesian information criterion (BIC). The clustering experiments were conducted on various
simulated datasets. Our novelty lies in implementing the ARMA mixtures model in Python

3 Related Work

3.1 Markov chains

Finite mixtures of Markov chains have been proposed for clustering time series. The EM
algorithm is used to learn mixing coefficients as well as the parameters of the component models.
Then number of clusters can be determined by comparing different choices of the number based
on some scoring scheme.

3.2 Hidden Markov Models

Some time series can be modeled better using HMM due to their ability of handling uncer-
tainty in temporal and spatial dimensions simultaneously. For example, HMMs have been very
successfully used for speech recognition, handwriting recognition and bioinformatics.

3.3 Regression models

Regression models, mixtures of regression models or regression mixtures and their extensions
are another type of models that can be used for time series modeling and clustering. Typically,
a regression model provides a projection from the baseline status to some relevant demographic
variables. Curve-type time series data are quite common examples of these kinds of variables.
For example, mixtures of standard regression models and the accompanying EM algorithm have
been used for the clustering of trajectory data.

3.4 Autoregressive moving average (ARMA) models

In addition to Markov chains, HMMs and regression models, ARMA and autoregressive inte-
grated moving average (ARIMA) models have also been used extensively for time series analysis.
However, clustering applications bases on such mixtures models were not studied.
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4 Model-based clustering with ARMA mixtures

4.1 Standard ARMA models

Given a time series {xt}nt=1, the fitted ARMA(p, q) model takes the following form

xt = φ0 +

p∑
j=1

φjxt−j +

q∑
j=1

θjet−j + et, t = 1, 2, . . . , n (1)

where n is the length of the time series Φ = {φ0, . . . , φp, θ1, . . . θq} are model parameters and
{et}nt=1 is a sequence of i.i.d. gaussian white noise with variance σ2.

4.2 ARMA mixtures

The ARMA models can be extended to mixtures of ARMA models. In this setting we assume
the time-series data is generated from M different ARMA models, which correspond to the
cluster M clusters of interest. The clusters are denoted as ω1, . . . , ωk. The likelihood function
of mixture model can be expressed in the form of a mixture density as follows

P (x|Θ) =

M∑
k=1

P (x|ωk,Φk)P (ωk) (2)

Here P (ωk) is the prior probability that time series comes from cluster k, P (x|ωkΦk) denotes the
conditional likelihood function for cluster k with parameters Φk and Θ = Φ1, . . . ,ΦM , P (ω1, . . . , ωM ).

Suppose the complete dataset D = x1,x2, . . . ,xN of N time-series is given. Under the assump-
tion that different time series are conditionally independent given the underlying parameters,
we can write the likelihood of D as

P (D|Θ) =

N∏
i=1

P (xi|Θ) (3)

Model parameter learning is equivalent to finding the MAP estimate i.e.

Θ̂ = arg max
Θ

(P (D|Θ)P (Θ)) (4)

If we take a uniform prior the objective turns into maximum likelihood estimation (MLE)

Θ̂ = arg max
Θ

P (D|Θ) (5)

We will solve the MLE objective using EM algorithm.

4.3 EM Algorithm for ARMA mixtures

In the context of ARMA mixture modeling for clustering, the latent data corresponds to the
cluster id. The log-likelihood l(Θ, D) can be written as

l(Θ, D) =

N∑
i=1

lnP (xi|ωzi,Φzi
) +

N∑
i=1

lnP (ωzi) (6)

Given the observed data D and the current parameter estimates Θ(t), the expected complete
log data likelihood becomes
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Q(Θ|Θ(t)) =
N∑
i=1

M∑
k=1

P (ωk|xi,Θ(t)) lnP (xi|ωk,Φk) +
N∑
i=1

M∑
k=1

P (ωk|xi,Θ(t)) lnP (ωk) (7)

where the posterior probabilities can be computed as

P (ωk|xi,Θ) =
P (xi|ωk,Φk)P (ωk)∑M
u=1 P (xi|ωu,Φu)P (ωu)

i = 1, 2, ..., N andk = 1, 2, ...,M (8)

The EM algorithm interactively maximizes the function Q(Θ|Θ(t)) until convergence. At each
iteration we compute the posterior P (ωk|xi,Θ(t)) and given the current parameter estimates
Θ(t) in the E-step and update the parameter estimate by maximizing the expected complete log
data likelihood Q(Θ|Θ(t)) over Θ in the M-step. The algorithm can be summarized as follows:

• initialize Θ, t← 0

• do t← t+ 1

– E-Step: compute posterior probabilities P (ωk|xi,Θ(t)) and Q(Θ|Θ(t)) using the
current parameter estimates

– M-Step: Θ(t+ 1)← arg maxΘQ(Θ|Θ(t))

• until some convergence condition is satisfied

• return Θ(t+ 1)

One of the possible convergence condition would be to check the difference in the log-likelihood
between two time-steps. Another possibility can be to observe the change in the estimates of
Θ between two time steps.

The M-Step update equations are as follows -

P̂ (ωk) =
1

N

N∑
i=1

P (ωk|xi,Θ (t))

σ̂k
2 =

∑N
i=1

[
P (ωk|xi,Θ (t))

∑n
i=1 e

2
i,t

]
∑N

i=1 [nP (ωk|xi,Θ (t))]

δ̂k =
(
Ŵk

−1
)

Ûk where

δ̂k = (φk,0, φk,1, · · · , φk,p, θk,1, · · · , θk,q)T

Ŵk =
N∑
i=1

[
P (ωk|xi,Θ (t))

(
A B
C D

)]

Ûk =

N∑
i=1

[
P (ωk|xi,Θ (t)) (a0, a1, a2, · · · , ap, c1, c2, · · · , cq)T

]

4.4 Model selection using BIC

The learning problem discussed in the previous section assumes that the model has already
been selected, ie, the number of clusters has already been specified by the user before clustering
is preformed. However, in may real-world problems, the actual model size is unknown. We
have to select the most appropriate model (size) for clustering problems. Two families of model
selection methods in common use:
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1. Cross Validation

2. Bayesian model selection (BIC)

The Bayesian approach to model selection is to compute the posterior model probabilities of
all possible models in the model space, and to select the model with the highest posterior
probability. BIC is one such approach. The BIC, which is an approximation of the Bayes
factor, is based on the maximized log-likelihood minus a penalty term to estimate the posterior
model probability quickly and efficiently. The BIC takes the form

BIC = logP
(
D|Θ̂

)
− 1

2
V logN

where Θ̂ is the MLE parameter of the model and V is the number of independent parameters to
be estimated in the model. The first term is the maximized log-likelihood which tends to favor
larger models with more parameters, while the second is the penalty term which favors smaller
models with less parameters. The BIC criterion tries to strike a balance between the
simplicity of a model and its fit to the data. The larger the BIC value, the better the
model.
Under our framework, the best mixture model for clustering has the maximum marginal like-
lihood probability P (D|Θ). Given a partition with M clusters, the BIC criterion is expressed
as

BIC =
N∑
i=1

log

[
M∑
k=1

P
(
xi|ωk, Φ̂k

)
P̂ (ωk)

]
− 1

2
(Mν +M − 1) logN

where ν is the number of parameters in each component model.

5 Experiments

We generate the dataset from 3 ARMA(2, 1) models of same variance. The specifications are
given in Table 1. To check if our simulation code is correct, we fit the simulated data with
statsmodels.tsa models and compare the obtained coefficients. For each ARMA model, we
generate 10 time series with 500 points each, thus obtaining 30 time series sequences to be
clustered.

Model φ1 φ2 θ1 σ2

ARMA(2, 1)1 -0.05 0.52 0.44 0.27

ARMA(2, 1)2 0.36 0.10 0.06 0.27

ARMA(2, 1)3 0.34 0.27 -0.25 0.27

Table 1: Model specification for data generation

Next, we implement the EM algorithm for T = 20 iterations. In the E-Step, we use the
log-sum-exp trick to ensure the values are bounded. We consider the case where the number of
clusters are unknown. To determine the number of clusters and the appropriate ARMA models,
we compare the BIC values. Table 2 shows the normalized BIC values we obtained.

For higher values of cluster number K and (p, q), the algorithm took a lot of time to con-
verge, or there were cases of formation of singular matrix in the M-step. Hence, we resorted to
only the hyperparameters as shown in Table 2.
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Params (1, 1) (1, 2) (2, 1) (3, 1) (4, 1)

1 0.27383783 0. 0.61050917 0.71063051 0.70347159

2 0.52299774 0.14770012 0.91758181 0.98996471 0.90732037

3 0.57297075 0.20764925 0.95114377 1. 0.98725254

4 0.40846709 0.087751 0.83125219 0.85980297 0.82738821

5 0.45894073 0.02780187 0.79863557 0.79017958 0.74745604

Table 2: Normalized BIC Values - each row corresponds to k clusters as indicated by row
number; the column name refers to (p, q) values for ARMA model mixture

Figure 1: BIC normalized values for various cluster numbers and parameter numbers (p, q)

From Figure 1, , we can see that for K = 3, the BIC values are higher. This holds good
with the fact that our data has been generated from 3 ARMA models.

While (3, 1) and (4, 1) seem to be on the higher end of BIC values, it can be attributed to
overfitting (ie, larger number of parameters). Note that (2, 1) has almost comparable values as
that of (3, 1) showing the efficacy of our work.

Some ways to improve our current experimental results -

1. Better initialization: We have initialized the φ and θ values using standard normal
distribution. However, there are better ways to initialize. One such method followed in
the paper is to use Stochastic EM Algorithm to obtain an initial set of values for φ and
θ, and then apply the general EM algorithm.

2. Use k-means: Apply k-means clustering to obtain an initial set of cluster means, which
can be used as initializations for general EM algorithm.
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5.1 The Specific Case of K = 3, (p, q) = (2, 1)

In this subsection, we look into the specific case of K = 3, (p, q) = (2, 1), since this is how
the data was actually generated. We measure the cluster similarity, and look at the graph
of complete log-likelihood. We also compare the estimated parameter values with that of the
actual parameter values.

1. Cluster Similarity: We use the cluster similarity formulation as defined in the paper,
given by

sim (G,A) =
1

K

K∑
i=1

max1≤j≤Ksim (Gi, Aj)

sim (Gi, Aj) =
2|Gi ∩Aj |
|Gi|+ |Aj |

where G1, G2, · · · , GK are the ground truth clusters, and A1, A2, · · · , AK are the clusters
obtained from algorithm. Note that, due to label switching, A1 of obtained clusters need
not correspond to G1 of ground-truth clusters. So, to account for this exchangeability, we
take a max in the similarity formula. In our experiments, we obtained a cluster similarity
of 0.624 for the specific case in discussion. A reason for this somewhat low value is that
our algorithm assigns very low probability to one of the clusters, effectively resulting in
only two clusters - [P̂ (ω1) , P̂ (ω2) , P̂ (ω3)] = [0.63, 0.033, 0.33]

2. Complete-log-likelihood: From Figure 2, we can see that the CLL is always increasing.
This can be used to track the progress of EM algorithm. We can also determine the
number of iterations required by looking at this graph, as in, if CLL plateaus beyond a
point, we need not iterate beyond that point.

3. Estimated parameters: Note that while simulating the data we took φ0 = 0. However,
while estimating, we do obtain values for φ0 albeit very small. The estimated values
of σ2 match very well with those of the actual values. Comparing Table 1 and 3, it
seems that the third cluster values are quite close to ARMA(2, 1)3, while the first cluster
values are close to ARMA(2, 1)2. The poor overlap of estimated model parameters can be
attributed to the fact that EM algorithm converges to a local maxima and heavily depends
on how good the initialization. In our experiments, we have not taken any particular care
to initialize well. Better initializations are bound to yield much significant overlap of
parameter values.

φ̂0 φ̂1 φ̂2 θ̂1 σ̂2

0.007 0.536 0.185 -0.19 0.27

0.012 0.508 0.452 -0.346 0.288

-0.005 0.46 0.26 -0.36 0.264

Table 3: Estimated parameters
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Figure 2: Plot of Complete log-likelihood vs no. of iterations
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